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A new procedure for calculating model coefficients from fluctuation data for fully developed
turbulence is derived. This procedure differs from previous related methods in that it is constructed
in a spatial rather than spectral representation. This has a number of advantages, such as reduced
data set requirements, ability to represent spatially inhomogeneous systems such as the ones with
curvature or zonal flows, and ability to use data from experimental diagnostics with limited spatial
resolution. In this method, the model equation is represented as a linear superposition of linear and
nonlinear differential operators. The coefficients of this superposition are calculated using a
least-squares method. This method has been tested on simulations of fully developed two
dimensional turbulence and compared to previous methods. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3093844�

I. INTRODUCTION

Bispectral analysis is a term used to describe a variety of
analysis techniques. In plasma physics, it typically refers to
methods that exploit three-wave correlations, also known as
the bispectrum. The most common methods of this type use
the bispectrum along with some normalizing factors to esti-
mate the strength of three-wave coupling.1–6 While these
methods are simple and easy to apply, they fail to exploit the
full potential of analyzing the bispectrum. A second, less
commonly used approach uses the bispectrum along with
other statistical moments �up to fourth order� to calculate not
only coupling strengths but linear growth rates and frequen-
cies as well.7–10 It is this last class of algorithms that we will
be looking at in this paper.

In theory, fully quantitative methods of bispectral analy-
sis offer a number of advantages over other methods of tur-
bulence analysis. First of all, because it directly infers the
coefficients of the underlying turbulence equations rather
than examines their effects, it invokes a one-to-one corre-
spondence between source equations and output solutions.
This contrasts with comparisons between experiment and
simulation or experiment and analytic theory, in which more
than one set of growth rates could produce a similar-looking
spectrum. As a result, it becomes possible to obtain detailed
information about the functional form of the driving insta-
bility.11 Second, bispectral analysis offers more detailed in-
formation about nonlinear mode coupling than other ap-
proaches. This means that one does not assume a priori the
structure of the nonlinearity. Third, it permits the examina-
tion of nonlinear instability and damping, which manifest
themselves as finite-amplitude-induced changes to the
growth rate,12 and the nonlinear decorrelation rate. Measure-
ment of these quantities offers access to key effects such as
nonlinear damping of zonal modes13 and the scaling of the
turbulent decorrelation rate with global quantities such as the
magnetic field.14 Fourth, by combining these pieces of infor-
mation, one can infer the actual equations governing the tur-
bulence.

In practice, the utility of these methods tends to be ham-
pered by the requirements they place on measurements. First,
there must be measurements corresponding to each of the
dynamically active linear eigenmodes to be analyzed. For
many important types of plasma turbulence, dynamics are
essentially two dimensional �2D� due to the effect of the
magnetic field. However, many diagnostics capable of ac-
cessing the core are only capable of one dimensional fluc-
tuation measurements. This creates considerable uncertainty
in the inferred growth rates.11 In addition, if there are mul-
tiple interacting fields, this can result in more than one dy-
namically important branch in the linear dispersion relation.
This necessitates the measurement of more than one field.
Both of these factors increase not only the amount of data
that needs to be gathered but also the complexity of the
experimental apparatus required to gather it. Second, one
must have data not only for the eigenmodes of interest but
also for every mode they nonlinearly interact with. This can
be a problem if a diagnostic only covers a small portion of
the plasma. Third, until the development of the basis func-
tion method,15 bispectral analysis required long-time-series
data. In addition to these problems related to experimental
measurements, bispectral methods are limited because they
essentially fit coefficients to an analytic formula. Thus, any
effect that is not included in the analytic formula cannot be
inferred. In traditional spectral algorithms, this included
things such as geometric effects.

In this paper we present a new class of bispectral algo-
rithms designed to solve some of these fundamental prob-
lems. By operating in a spatial rather than spectral regime,
we will be able to make calculations that depend only on
local dynamics. This allows us to account for a variety of
spatially inhomogeneous behavior: curvature of a cylindrical
coordinate system, zonal flows, and variations in underlying
gradients driving the turbulence. It is also well suited to
analysis of experimental data in which the diagnostics only
have a limited number of data channels in one direction since
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we only need data from a small neighborhood around each
point of interest.

The new method retains many of the advantages of the
existing basis function method, such as ability to work with
multiple coupled fields and ability to work with short time
series data. This comes at the price of sharing many of its
disadvantages. As we will see, it is necessary to make some
assumptions about the system to be analyzed in order to
construct our operator basis. This means there is a risk of
“confirming” false assumptions if sufficient care is not taken
in interpreting the results. However, these problems can be
minimized by using as large an operator set as is practical
and by using quality-of-fit estimation to look for signs that a
particular set of operators is insufficient.

II. BACKGROUND

In order to understand the basis operator method, it is
helpful to first understand the spectral methods that it is re-
lated to. We will therefore begin with a discussion of prior
art in the field of bispectral analysis. The line of research that
we are interested in begins with the Ritz method developed
by Ritz and colleagues.7–9 It continues with the modified Ritz
method developed by Kim and co-workers.10,11 The most
recent addition to this line consists of the basis function
method developed by Baver and Terry.15

In each of these methods, the idea is to assume that the
turbulence observed obeys some predefined equation with
undetermined coefficients, then solve for these coefficients
using statistical correlations in the data set. Both the Ritz and
modified Ritz methods use the same basic turbulence model
and notation, so we will discuss that notation here. The basis
function method uses a different model, which will be dis-
cussed in that section. The generic turbulence equation used
in the former two methods is as follows:

Yk = LkXk + �
k1�k2

k=k1+k2

Qk
k1,k2Xk1

Xk2
, �1�

where Xk=��k , t� and Yk=��k , t+��, with � as the measured
fluctuating quantity as a function of wavenumber and time.
From its form, it is evident that this equation is a difference-
equation representation in the temporal domain of a first-
order-in-time nonlinear partial differential equation. The co-
efficient Lk determines the growth rate of the turbulence,
with �k���Lk�2−1� /�, and the coefficient Qk

k1,k2 is the coef-
ficient of the quadratic nonlinearity responsible for nonlinear
transfer under model conditions. The coefficients L and Q
are what these algorithms attempt to calculate.

A. Ritz method

The first method for quantitatively estimating such infor-
mation in plasma was developed by Ritz and co-workers7–9

in the late 1980s. A review of this method is presented in the
introduction of an article on the modified Ritz method by
Kim et al.10

The Ritz method solves for the growth rates and transfer
functions by expanding the model equation in a series of
moment equations, multiplying by Xk

� and Xk1

� Xk2

� , respec-

tively. The fourth order moments in this series are approxi-
mated as products of second order moments. This approxi-
mation, which is commonly used in analytic turbulence
theory, is known as the Millionshchikov approximation and
is derived by assuming a nearly Gaussian distribution in the
fluctuating quantities. This results in the following equations:

�YkXk
�	 = Lk�XkXk

�	 + �
k1�k2

k=k1+k2

Qk
k1,k2�Xk1

Xk2
Xk

�	 , �2�

�YkXk1

� Xk2

� 	 = Lk�XkXk1

� Xk2

� 	 + Qk
k1,k2��Xk1

Xk2
�2	 . �3�

Using these equations, Ritz et al. proceeded to solve for Lk,
yielding the following:

Lk =

�Xk
�Yk	 − �

k1�k2

k=k1+k2

�Xk
�Xk1

Xk2
	�YkXk1

� Xk2

� 	

��Xk1
Xk2

�2	

�Xk
�Yk	 − �

k1�k2

k=k1+k2

��Xk
�Xk1

Xk2
	�2

��Xk1
Xk2

�2	

. �4�

This method has some significant disadvantages when
applied to measured fluctuation data. In particular, as noted
by Ritz, it can yield unphysically large damping coefficients
at all wavenumbers. This problem arises because the method
does not take into account nonideal fluctuations, that is to
say, deviations of the data from the physics described by the
model equation. Such deviations can arise from noise, mea-
surement error, or interactions of the fluctuating quantities
with physical effects outside of the scope of the model. This
issue is addressed by the modified Ritz method.

B. Modified Ritz method

This method was developed by Kim et al.10 and is de-
scribed in more detail in that article. The modified Ritz
method applies to the generic turbulence equation �Eq. �1��
and additionally assumes that each of the measured spectra
can be divided into an ideal and nonideal spectra,

Xk = �k + Xk
ni, Yk = �k + Yk

ni, �5�

where �Xk ,Yk� are the measured spectra at time t, t+�t, re-
spectively; ��k , �k� are the ideal spectra at the same times;
and �Xk

ni , Yk
ni� are the nonideal spectra.

From this Kim et al. derived moment equations for the
ideal and nonideal spectra and then drop all cross terms in-
volving the nonideal spectrum. Unfortunately, this approach
results in equations to which the Millionshchikov approxi-
mation cannot be applied, thus entailing the increased com-
putational cost of calculating the fourth order moments.
Moreover, since the Q’s in Eqs. �2� and �3� refer to different
pairs k1 and k2, a matrix notation is needed to represent the
equations for the third and fourth order moments. This is
solved by introducing the following notation:

Q = �Ql
��l+2i�/2,�l−2i�/2�� ,

A = ��X�l+2i�/2X�l−2i�/2Xl
�	� ,
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B = ��X�l+2i�/2X�l−2i�/2Yl
�	� ,

F = ��X�l+2i�/2X�l−2i�/2X�l+2j�/2X�l−2j�/2	� ,

where l is the index of the mode wavenumber k �k= f�l�,
where f is a linear function�, and i and j are indices of the
resulting tensors.

An additional constraint is required to solve this system.
This constraint is supplied by the assumption that the turbu-
lence is steady state, that is, ��k�k

�	= ��k�k
�	. This allows us

to obtain the following expressions for Lk:

Lk =
�YkXk

�	 − �B��T · F−1 · A

��k�k
�	 − �A��T · F−1 · A

, �6�

Lk =
��k�k

�	 − �B��T · F−1 · B

�XkYk
�	 − �A��T · F−1 · B

. �7�

Combining these gives a formula for the growth rate �,

�k =
�A��T · F−1 · A − �B��T · F−1 · B

��k�k
�	 − �A��T · F−1 · A

. �8�

This method produces more accurate fits than the Ritz
method, but a long-time series is still required to produce an
accurate fit. This limitation was the primary motivation for
the development of the basis function method.

C. Basis function method

The basis function method was developed recently to
address some of the limitations of the previous methods of
bispectral analysis.15 Its main purpose is to reduce the num-
ber of pairs of time steps �realizations� required to get a
numerically well-posed solution and to generally increase the
accuracy of the fit. The key realization here is that the modi-
fied Ritz method is, in fact, related to the technique of least-
squares fitting, and is therefore sensitive to the number of
degrees of freedom in the solution. In the basis function
method, this sensitivity is addressed by artificially constrain-
ing the solution so as to enforce some condition that permits
physically realistic solutions, while reducing the number of
variables needed to describe that solution. This reduces the
size of the input data set needed to yield a unique and well-
posed solution.

The method employed to impose this constraint is to
limit the nonlinear terms to an incomplete set of basis func-
tions. In doing so, one permits nonlinearities with a smooth
functional form but prohibits more irregular nonlinear forms
that could, in principle, be extracted to fit the data. Smooth
nonlinearities can be represented as linear superpositions of
members of the basis set, and with a sufficient number of

basis functions, one can represent a wide variety of nonlinear
coupling functions while still having far fewer degrees of
freedom than required to describe the linear terms.

In addition, the basis function method is constructed in
such a way as to be easily generalizable to multiple fields.
The previous methods could also be theoretically generalized
in that sense, but the basis function method, being more ac-
curate, can better deal with the complications presented by
multifield data sets.

The basis function method begins with a modified model
equation,

Ŷi
k 
 Ỹi

k + Yi
k = Dij

k Xi
k + �

k�

����ilm
k,k� Xl

k�Xm
k−k�, �9�

where repeated indices indicate summation over the index.
The values X and Y in this case are field vectors at times t
and t+	t, with the subscript indicating which field is refer-
enced, i.e., 1 gives density, 2 gives potential, etc., or what-
ever labeling scheme is appropriate for a particular system.

The values ��ilm
k,k� are a predefined basis of functions used to

represent nonlinearities. The coefficients �� are the ampli-
tudes of the linear superposition of these basis functions,
which, along with the linear coupling coefficients Dij

k , are the
quantities solved for by this method. This type of model
equation is suitable for fluid models with an arbitrary number
of equations and quadratic nonlinearities.

Using our model equation to define the error Ỹ, we can
now minimize this error using the variational principle. The
procedure for doing this is covered in more detail in the
original article on the basis function method. The end result
is a formula for the coefficients �� and Dij

k ,

Dlm
k = �Iij,lm

k�,k ajn
k� − A
in

�k�F
�
−1A�lm

k �−1�bin
k� − A
in

�k�F
�
−1B�� , �10�

�
 = F
�
−1�B� − Dij

k A�ij
k � , �11�

where F�

�k,k�,k�,i��ilm
�k,k��
inp

k,k� �Xn
k�Xp

k−k�Xl
�k�Xm

�k−k�	, A�ij
k


�k���ilm
�k,k��Xj

kXl
�k�Xm

�k−k�	, B�
�k,k�,i,j��ilm
�k,k��Y j

kXl
�k�Xm

�k−k�	,
aij

k 
�Xi
kXj

�k	, bij
k 
�Yi

kXj
�k	, and Iij,lm

k�,k 
1 if ij= lm, k=k�, or 0
otherwise, and “�” denotes a complex conjugate.

When tested against simulation data, this method is ca-
pable of reconstructing model coefficients with an exception-
ally high degree of accuracy. It is also capable of producing
meaningful fits using very small amounts of data, as few as
six time steps in the case of a two-field model and four if
there is only a single field. Larger numbers of time steps do
improve noise rejection capabilities, but data requirements
are still not nearly as large as with the previous methods.

While reducing the need for long-time series is certainly
an advantage, the requirement that most hampers the appli-
cation of this method to experiment is that of 2D spectral
data at a resolution appropriate to the physics of the under-
lying system, i.e., data that are capable of resolving both the
spectral range responsible for instability and that responsible
for dissipation. While it is common to find experimental di-
agnostics with sufficient resolution in one direction due to
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the common effect of plasma rotation, finding diagnostics
that can achieve good resolution in two different directions
simultaneously is rather more difficult. It is this problem that
forms the motivation for the development of the basis opera-
tor method.

III. BASIS OPERATOR METHOD

A. Motivation

In reviewing the aforementioned methods, it becomes
evident that all share a common limitation: they all assume
that the system being analyzed is susceptible to a spectral
representation. In the case of homogeneous turbulence, this
assumption is at least approximately valid; while the bound-
ary conditions will not be the same as a periodic box, the
behavior within those boundaries will still fit the model
equations. However, if the system is inhomogeneous, this
assumption will break down completely.

In an inhomogeneous system, there will be terms in the
model equation that depend on position. In order to include
these terms, one must do one of two things. One option is to
represent these inhomogeneous terms in spectral form. The
other option is to convert the entire model equation into a
purely spatial form. Of these, converting the model equation
to spatial form has several advantages. First, it eliminates
issues pertaining to boundary conditions, as one can simply
not evaluate the resulting algorithm close to boundaries. Sec-
ond, it eliminates any restriction on what type of inhomoge-
neities can be included in the model, which proves conve-
nient in the case of cylindrical coordinates. Third, it results in
an algorithm of superior computational efficiency. To evalu-
ate nonlinear terms efficiently, it is necessary to use a pseu-
dospectral method, which converts from Fourier space to real
space, evaluates nonlinear terms in real space, then converts
the answer back to Fourier space. Evaluating linear terms in
real space eliminates two steps in this process.

The drawback to this approach is that certain types of
linear behavior �such as resonances� may be difficult to
model. Also, it necessitates the use of a basis function rep-
resentation for both linear and nonlinear terms. This means
that issues pertaining to basis selection are more serious.
Basis representation of the linear terms is necessary because
otherwise the resulting algorithm is nonlocal, and thus gives
up any computational advantages over a pseudospectral
code. While these issues may result in a significantly less
accurate fit in some cases, they are a small price to pay for
the ability to analyze systems where spectral methods may
not work at all.

B. Derivation

The first step in deriving the basis operator method is to
make a further modification to the model equation for the
basis function method. This is done partly for the purpose of
adjusting notation, but mainly in anticipation of the incorpo-
ration of a basis function representation for linear terms. The
modified model equation is as follows:

Pi�k���̇k
i = �
D


ij�k���k
j + ��Q�

ilm�k�,k�� ��k�
l �k−k�

m , �12�

where i, j, l, and m are field labels. The changes in notation
compared to Eq. �9� are to avoid confusion later in the deri-
vation. � is now a model coefficient rather than a basis set.
This choice is made by analogy since we are already using �
as a model coefficient. The role of � in the nonlinear term is

now replaced by Q�
ilm�k� ,k�� �. D is now a basis set rather than

a model coefficient. The dynamical variables are represented
by the field vector � rather than by X and Y. This is done
because x will soon be used as a spatial coordinate.

In addition to the above changes in notation, a preopera-
tor Pi�k�� has been introduced. This is done by simply multi-
plying both sides by a function of k, then incorporating the
resulting terms on the right hand side into the definition of
the basis sets D and Q. The purpose of the preoperator is to
avoid basis functions that have reciprocal dependence on k
�i.e., vary with some negative power of the wavenumber�.
This is important because when we transform to real space,
any negative powers of k turn into integral rather than dif-
ferential operators, resulting in integrodifferential equations
that are difficult to solve; eliminating these terms allows the
model equation to convert to simply a differential equation in
real space. One example of a system where this is an issue is
the Hasegawa–Wakatani equation, in which the � equation
can be written either with a factor of 1 /k2 on the right hand
side or a factor of k2 on the left hand side. Forcing the equa-
tion into a form consistent with Eq. �9� results in the former;
the task of converting to real space is much simpler with the
latter.

Once these changes are made, we can now transform the
model equation into real space. To do this, we first make a
Taylor expansion in kx and ky for each of the k-dependent
terms �P ,D ,Q� in Eq. �12�. Once this is done, each power of
kx or ky is replaced by an appropriate order derivative in that
direction. For instance, suppose the model equation has the
following structure as a polynomial in k:

�1 + k2��̇k = iky�k + �
k�

�k � k���k�2��k��k−k�. �13�

Then the resulting spatial equation is as follows:

�1 − �2��̇�x�� = �y��x�� + �x�
2��y� − �y�

2��x� . �14�

When Eq. �12� has been converted along these lines, the
resulting generic spatial model equation is as follows:

Pi��̇i;x�� = �
D

ij��i;x�� + ��Q�

ilm��l,�m;x�� , �15�

where D

ij��i ;x��, Q�

ilm��l ,�m ;x��, and Pi��̇ ;x�� are now differ-
ential operators rather than functions of k, and �i is the value
of the field vector at location x�. From here we can define a
variance to be minimized, equal to the mismatch between the
two sides of Eq. �15�,

i = �
D

ij��i;x�� − Pi��̇;x�� + ��Q�

ilm��l,�m;x�� . �16�
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Much as with the original basis function method, we
then derive a formula for the coefficients in this equation by
minimizing the variance using the variational principle. This
results in the following moment equations:

	���D�
in��n;x����
D


ij�� j;x�� − Pi��̇i;x��

+ ��Q�
ilm��l,�m;x���� = 0, �17�

	���Q�
inp��n,�p;x����
D


ij�� j;x�� − Pi��̇i;x��

+ ��Q�
ilm��l,�m;x���� = 0. �18�

These equations are then used to construct moment equations
for � and �. This results in the following:

�
a
� − b� + ��A��
T = 0, �19�

�
A
� − B� + ��F�� = 0, �20�

where a
�= �D

ij�� j ;x��D�

il��l ;x��	, b�= �Pi��̇i ;x��D�
il��l ;x��	,

A
�= �D

ij�� j ;x��Q�

ilm��l ,�m ;x��	, B�= �Pi��̇i ;x��Q�
ilm

���l ,�m ;x��	, F��= �Q

ilm��l ,�m ;x��Q�

inp��n ,�p ;x��	, and T
denotes transpose.

From these equations, we are able to solve for the coef-
ficients � and �,

�� = − F��
−1 ��
A
� − B�� , �21�

�
 = �a
� − A��
T F��

−1 A
��−1�b� − A��
T F��

−1 B�� . �22�

Once we have the values of � and �, these may be substi-
tuted into Eq. �15� in order to determine the equation obeyed
by the turbulent system in question.

Constructing an algorithm to calculate the values of �
and � from these formulas is a straightforward procedure.
The precise algorithm which results from this, however, de-
pends on the choice of basis operators.

C. Basis operator selection

In order for the solutions in Eqs. �21� and �22� to be
useful, we must first define the terms P, D, and Q in Eq.
�15�. These are the basis operators on which this algorithm is
based. There are many possible ways to define these opera-
tors, so we will concentrate on the definitions used in the
algorithm applied in Sec. IV. The construction of these con-
sists of three parts: the elementary differential operators used
to calculate local derivatives, the arrangement of these el-
ementary operators to form basis operators, and the indexing
of the basis operators.

The elementary differential operators are the mechanism
used in this algorithm to calculate spatial derivatives. In a
typical experimental or simulation data set, the spatial de-
rivatives required by Eq. �15� are not directly available.
Therefore, we must calculate derivatives using finite differ-
ence methods.

To calculate spatial derivatives at a given point, we be-
gin by sampling values within an n�m “patch” of the data
set, centered at the point we want to find derivatives at. Since
the algorithm uses statistical ensembles of correlations be-
tween different order derivatives to solve for the coefficients
� and �, this patch will therefore be scanned across the data
set. Within this patch, we can approximate spatial derivatives
with matrix operations,

�x
p�y

q�i�x�m+1�/2,y�n+1�/2� = Mpj
�m�Mql

�n��i�xj,yl� , �23�

where the matrix M�m� is the elementary differential operator
of the order of m. The subscript j ranges from 1 to m and the
subscript l ranges from 1 to n, so �m+1� /2 and �n+1� /2
define the center of the patch. The differential operators in
the x direction may or may not be different from the opera-
tors in the y direction; this depends on what type of data is
being analyzed, and whether or not m=n. In all of the cases
described in Sec. IV, the patch is square and operators of the
same type are used in both directions. Note that the maxi-
mum order derivative that can be calculated by this method
depends on the size of the patch. Thus, a patch of width one
can only calculate zeroth order derivatives, a patch of width
three yields up to second order derivatives, a width of five
yields fourth order, and so on.

There are several ways to construct these operators, but
only two are used in Sec. IV for testing the algorithm. The
first of these is designed for more general use, particularly
for tests against spectral simulations. It is also the more suit-
able of the two for analyzing experimental data. This method
is optimized to isolate different order derivatives as much as
possible given a particular size patch. The price paid for this
is that the solution uses the entire patch to calculate any
nonzero order derivative. In some cases, this may mean as-
cribing to the data set longer range spatial correlations than
actually exist. However, in most cases this is not a significant
drawback.

In this method, the goal is to construct a matrix such that
multiplying it by a sequence of data values returns the Taylor
series coefficients for that sequence. This can be found by
taking a matrix that converts Taylor series coefficients to data
values and inverting it. Therefore, if we construct a matrix
consisting of powers of displacement from center and invert
it, we will get the matrix we are looking for. In more specific
terms,

Mij
�m� =  �i − h� j−1

�j − 1�! �−1

, �24�

where m=2h+1 and i and j ranged from 1 to m. Applying
this formula for m=7 yields the following matrix:

032309-5 Basis operator bispectral analysis Phys. Plasmas 16, 032309 �2009�

Downloaded 20 Jul 2009 to 128.104.1.219. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



��x−3� ��x−2� ��x−1� ��x0� ��x1� ��x2� ��x3�
�x

0 0 0 0 1 0 0 0

�x
1 − 0.0166 0.15 − 0.75 0 0.75 − 0.15 0.0166

�x
2 0.0111 − 0.15 1.5 − 2.722 1.5 − 0.15 0.0111

�x
3 0.125 − 1 1.625 0 − 1.625 1 − 0.125

�x
4 − 0.166 2 − 6.5 9.333 − 6.5 2 − 0.166

�x
5 − 0.5 2 − 2.5 0 2.5 − 2 0.5

�x
6 1 − 6 15 − 20 15 − 6 1

. �25�

The other method is designed for tests against simulation
data generated via a finite difference method. Its purpose is
to match the structure of differential operators commonly
used in simulation codes. Since what order derivatives are
used in the simulation is not known, this method is designed
so that the matrix Mli

m−2 can be found from the matrix Mli
m by

simply removing excess rows and columns. That way, if we
overestimate the order derivatives in the code, the algorithm
will simply return near-zero values for the coefficients asso-
ciated with these surplus operators. In other words, the algo-
rithm does not assume longer range spatial correlations than
what is in the simulation. The price paid for this is that it
does not isolate different order derivatives. Thus, the value
returned for a second order derivative will also depend on the
fourth order derivative, the value returned for third order will
also depend on fifth order, and so on. This results in a less
accurate calculation of physical dispersion, but more accu-
rately matches the numerical dispersion found in most simu-
lation codes.

In this approach, the matrix M�m� is constructed itera-
tively. Starting with the unit matrix M�1�, we add rows to the
bottom and columns to either side. The elements that are in
both new rows and new columns are initialized with values
of 1 for odd rows and �

1
2 for even rows. We then calculate

the response of each row to derivatives of lower order and
subtract a multiple of the appropriate previous row to remove
this response. This yields the following formulas:

Mij
�1� = 1,

Mij
�m� = Mi,j−1

�m−2� + Nij
�m�

− �
n=1

m−2

Mn,j−1
�m−2� �l=1

m Nil
�m��l − h + 1�n−1

�p=1
m−2Mn,p

�m−2��p − h − 1�n−1 , �26�

Nij
�m� =�

1 if i = m and j = 1 or m
1
2 if i = m − 1 and j = m

− 1
2 if i = m − 1 and j = 1

0 otherwise,
�

where m=2h+1 and i and j ranged from 1 to m. Note that m
can only take odd values with this method, so a definition of
the matrix Mij

0 is not needed. Applying these formulas for
m=7 yields the following:

��x−3� ��x−2� ��x−1� ��x0� ��x1� ��x2� ��x3�
�x

0 0 0 0 1 0 0 0

�x
1 0 0 − 0.5 0 0.5 0 0

�x
2 0 0 1 − 2 1 0 0

�x
3 0 − 0.5 1 0 − 1 0.5 0

�x
4 0 1 − 4 6 − 4 1 0

�x
5 − 0.5 2 − 2.5 0 2.5 − 2 0.5

�x
6 1 − 6 15 − 20 15 − 6 1

.

�27�

Once the elementary differential operators have been
constructed, we can now define the operators D, Q, and P in
terms of them. The linear operators D� are the simplest, as it
is generally not necessary to exclude any possible operators
for the sake of computational or data use efficiency. Thus, all
we have do is take every derivative that can be calculated for
a given size patch and assign it an index. Since no possible
terms are excluded, this basis set makes no assumptions
about the underlying equations except that it can be ad-
equately approximated by a finite number of terms in a Tay-
lor expansion.

The nonlinear operators are rather more complicated, as
there are more possible operators than it is possible or prac-
tical to implement in the code. Much as with the original
basis function method, this is where assumptions about the
underlying physics of the system under study are brought to
bear. In the version of the algorithm used in this paper, nine
types of nonlinearities are permitted,

Q1 = �k � k���k�
�1��k−k�

�2� = �x�1�y�2 − �y�1�x�2,

Q2 = �k � k���k�2��k�
�1��k−k�

�2� = �x�
2�1�y�2 − �y�

2�1�x�2,

Q3 = �k � k���k2k�2��k�
�1��k−k�

�2�

= �2��x�
2�1�y�2 − �y�

2�1�x�2� ,

Q4 = �k � k���k2��k�
�1��k−k�

�2� = �2��x�1�y�2 − �y�1�x�2� ,

Q5 = �k � k���k4��k�
�1��k−k�

�2� = �4��x�1�y�2 − �y�1�x�2� ,

�28�
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Q6 = �k � k���k�2kx��k�
�1��k−k�

�2�

= �x��x�
2�1�y�2 − �y�

2�1�x�2� ,

Q7 = �k � k���k�2ky��k�
�1��k−k�

�2�

= �y��x�
2�1�y�2 − �y�

2�1�x�2� ,

Q8 = �k � k���kx��k�
�1��k−k�

�2� = �x��x�1�y�2 − �y�1�x�2� ,

Q9 = �k � k���ky��k�
�1��k−k�

�2� = �y��x�1�y�2 − �y�1�x�2� .

In each of these cases, the superscripts 1 and 2 in wave-
number space and corresponding subscripts in real space cor-
respond to field indices, i.e., �1=�, and �2=n. In cases
where the nonlinearity is symmetric in k�, only cases where
the field indices are unequal are allowed since otherwise
these terms will cancel when summed over all possible val-
ues of k�. If the nonlinearity is not symmetric in k�, then all
possible values of the field indices are allowed. This results
in a total of 42 different nonlinearities, each of which is
assigned an index and a corresponding coefficient ��. For
the simulation results analyzed in this article, these nonlin-
earities are more than sufficient since only a handful are
actually used in the simulations themselves. The extra non-
linearities serve to measure the completeness of the basis set,
as significant amplitude in these coefficients indicates an in-
accurate fit that might be improved by adding more terms.
However, for application to experiment, where the structure
of the nonlinearity is not as well known, additional terms are
advised.

The preoperator is a tool for dealing with particular
types of systems of equations. Certain common turbulence
models �such as Hasegawa–Wakatani, as employed in Sec.
IV� have dispersion relations that are singular at zero wave-
number. This is due to differential operators applied to the
time derivative of the fluctuating quantities �the left hand
side of the equation�, as opposed to the fluctuating quantities
themselves �the right hand side of the equation�. As a result,
if we attempt to represent such a system by a model equation
that does not contain derivatives on the left hand side, the
linear terms cannot be represented by a series expansion in
wavenumber. However, if we differentiate both sides of the
equation, a series expansion becomes once again possible.

How the resulting operators are labeled is not important
in a homogeneous system; the order must be remembered
when interpreting the results, but interchanging both coeffi-
cients and their corresponding operators does not change the
resulting inferred equation. However, in inhomogeneous sys-
tems it is useful to create additional labels for operators ap-
plied to different parts of the data set. For instance, we might
create a set of linear differential operators that are identical
in their functional form, but are set to zero except at a single
radial position. Each of these operators corresponds to spatial
derivatives at a specific radial position, so the corresponding
coefficients will give the corresponding derivatives as a
function of radius. This capability is useful for studying sys-
tems with shear flow or other inhomogeneities that are of
particular interest.

IV. TEST RESULTS

In order to test this algorithm, we apply it to simulations
of fully developed turbulence. Three tests are listed in this
section, all of which consist of 2D two-field models. The first
test employs a trapped electron mode �TEM� model. This
model is described in more detail in the basis function
paper.15 The other two employ a local Hasegawa–Wakatani
model.16 The two Hasegawa–Wakatani simulations differ in
that one of them contains additional terms to account for
shear flow, thus introducing a spatial inhomogeneity.

A. Comparison of procedure with spectral
basis function method

The first test is a comparison of fit results between the
basis function �original� and basis operator �new� methods.
This is applied to data from a collisionless TEM simulation;
these particular data were chosen mainly for convenience, as
it was readily available from previous related work. It also
used sufficiently short time steps to permit accurate estima-
tion of time derivatives. Moreover, having intimate familiar-
ity with the simulation model meant that the quality of fit
could be evaluated accurately. Since these data were already
used for tests of the basis function method, its suitability for
bispectral analysis was known in advance.

Since these data were from a spectral simulation, apply-
ing the basis operator method to it requires that it first be
Fourier transformed to real space. This was done to convert
the 33�33 spectral data into 64�64 spatial data. Further
conversion of the output was required in order to compare to
the basis function results. The basis operator method outputs
a list of coefficients for its various operators, which represent
a series expansion of the underlying dispersion relation with
respect to wavenumber. This type of information is difficult
to interpret without familiarity with the operator set in ques-
tion and is therefore of little value in interpreting the results.
To solve this problem, the basis operator coefficients were
used to reconstruct a spectral dispersion relation. This could
then be compared directly to the output of the basis function
method, which also produces coefficients which are func-
tions of wavenumber.

Because the TEM dispersion relation does not contain a
singularity at zero, the preoperator was not used. The differ-
ential operator set is given by Eq. �25�, as constructed for a
7�7 patch. Nonlinear operators are given in Eq. �28�.

Some of the results of this comparison are shown in Fig.
1. The horizontal axis shows wavenumber in the y direction
with kx=0. The vertical axis shows one of the eight compo-
nents of the linear coupling matrix �four real, four imaginary
for a two-field system�. The comparison shown is between
the basis operator method and the prior basis function
method. Since the results from the basis function method
have already been demonstrated to be accurate to several
significant figures,15 the basis function result can be taken as
a proxy for the actual model coefficients; a line for the actual
model coefficients would simply overlap with the line for the
spectral result and is therefore omitted for clarity. The plot
shows some variation between the two results. This is to be
expected since the model coefficients include artificial damp-
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ing that does not have a smooth functional form. Moreover,
the TEM dispersion relation does not have an exact polyno-
mial representation, so the finite number of terms permitted
by a 7�7 patch �up to sixth power in wavenumber� means
the fit will not be exact. Nonetheless, the fit displayed is
close enough to confirm that the basis operator method is
able to achieve a useful degree of accuracy.

Another measure of the quality of fit is to take the time
derivative predicted by substituting the results in Eqs. �21�
and �22� into Eq. �15�, then take the difference between that
and the actual derivatives in the data set. This approach is
generally useful for any form of basis function or basis op-
erator method because it allows one to determine whether the
basis set is adequate; if the basis set is too incomplete �if
there are important processes not represented by one or more
basis functions or operators�, then the measured quality of fit
�rms variance� will be large. If there are too many basis
functions relative to the size of the data set, then the rms
variance will be small, but the results still appear noisy.

In the case of the above comparison, the actual measured
variance is 1.4�10−3. This indicates a relatively accurate fit.

B. Tests on homogeneous Hasegawa–Wakatani
turbulence

The second test employs data from a simulation of
Hasegawa–Wakatani turbulence. This model was chosen
based on its similarity to turbulence predicted to exist in the
controlled shear decorrelation experiment,17 which is a can-
didate for potential application of the basis operator method
to experimental data.

Because the Hasegawa–Wakatani model is singular at
small wavenumber, we must use the preoperator in this com-
parison. The specific type of preoperator places a �2 operator
on the � terms and no operator on the n terms. Also, because
the basis function method has never been applied to

Hasegawa–Wakatani simulations, we cannot compare the
two methods. Comparison therefore is between the output
from the basis operator method and the coefficients of the
original model equations. As with the previous comparison,
both of these are converted into spectral dispersion relations
for clarity. In addition, while converting the results into spec-
tral form we also correct for numerical dispersion resulting
from the size of time intervals in the data set.

The results of this comparison are shown in Figs. 2 and
3. These graphs each compare one of the eight components
of the linear coupling matrix, but as we can see, the quality
of fit is significantly different for different components. In
the case of Fig. 2, the fit is very close to theoretical predic-
tions. In the case of Fig. 3, the fit is significantly less accu-
rate. Naturally, the question arises as to why this is the case.

As with the TEM comparison, a quality of fit estimate
was used on these data. In the long-time-step case, this gave
a result of 6.9�10−4. This is a somewhat better fit than the
TEM case and is moreover orders of magnitude smaller than
the error evident from the plot. Thus, we can rule out random
error. The question is what type of systematic error is at work
here?

FIG. 1. Real part of phi-phi coefficient from a comparison of spectral and
spatial versions of the basis function method on TEM simulation data for
kx=0.

FIG. 2. �-n coefficient, imaginary part, from a test of basis operator method
on Hasegawa–Wakatani simulation data at kx=0.

FIG. 3. n-n coefficient, real part, from a test of basis operator method on
Hasegawa–Wakatani simulation data at kx=0.
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As it turns out, there is a very significant difference be-
tween the data set used in the TEM case and the data set used
in the Hasegawa–Wakatani case. That difference is that the
TEM data were sampled at shorter time intervals. Shorter
time intervals means that time derivatives, which in this al-
gorithm are calculated by a first-order accurate differencing
method, are therefore more accurate. In order to test the ef-
fect of time intervals on accuracy of fit, the algorithm was
applied to a second data set with shorter time intervals. The
results of this form the third line on the graphs in Figs. 2 and
3. The effect of this is ambiguous at high wavenumber but
yields a vastly superior fit at low wavenumber. Moreover, the
second derivative has the correct sign. Thus we conclude that
shorter time steps are the key to resolving this problem and
producing results more like those in the TEM case.

C. Tests on inhomogeneous Hasegawa–Wakatani
turbulence

The third test demonstrates one of the more interesting
capabilities of the basis operator method. Because basis op-
erators are calculated locally �within a patch of limited spa-
tial size�, it is therefore possible for the linear coefficients
from the solution to have different values at different spatial
locations. This, in turn, permits the method to diagnose spa-
tial variation in the underlying physics of a turbulent system,
such as variations in mean temperature and density gradients
�or more specifically their effect on turbulence� and flow
shear, including zonal flows.

This type of capability is implemented by changing the
scheme used to label coefficients. Low-order linear basis op-
erators �ones containing less than third order total deriva-
tives� are assigned different coefficients for each value of
radius. Linear operators of higher order, as well as nonlinear
operators, are averaged over the entire data set as usual in
order to aid the algorithm in rejecting noise.

The test of this capability involves applying this method
to data from a Hasegawa–Wakatani simulation involving ex-
ternally applied flow shear. The flow shear in question has
the specific functional form,

Vy
0 = − U0�1 + � cos�2�f0t��sin�2�x/Lx� , �29�

where U0=1.202 64, f0=0.1, and �=0.1. The flow described
by the above equations is of course an m=1 poloidal shear.
The time varying components are results of conditions in the
original simulation which are not specifically adapted to this
type of data analysis; this complication must be considered
in interpreting the results.

As with the previous Hasegawa–Wakatani test, we must
use a preoperator. The preoperator used here is of the same
type as that described above. Unlike the previous cases, the
results are not converted into spectral form for interpretation.
This is because our expected result is primarily spatial in
nature, so a spectral representation does not add clarity.
Moreover, the external poloidal flow is represented by a
single specific operator coefficient, specifically, the �y opera-
tor.

The results of this comparison are shown in Fig. 4. The
smooth line is the average poloidal flow, as given by Eq.

�29�. The other line is the output from the basis operator
method. Three rows on either end of the simulation region do
not have solutions due to the finite size of the differentiating
patch.

As we can see from this graph, the basis operator
method was successfully able to infer qualitative features of
the external flow. This is an impressive result considering
that the algorithm was averaging over several periods of flow
modulation, so no exact fit was possible.

V. SUMMARY AND DISCUSSION

We have derived a new procedure for estimating the pa-
rameters governing turbulence from experimental data. This
is done by first representing our model equation as a super-
position of differential operators. Then we apply a least-
squares minimization to determine the coefficients of that
superposition. This procedure can be applied to systems with
multiple interacting fields without loss of generality.

We have also tested this procedure against simulation
data. These tests demonstrate the capabilities of this algo-
rithm under a variety of conditions. They also demonstrate
that the fits this algorithm produces are not precise, particu-
larly in comparison with the previous basis function method.
However, this is to be expected since the reduced linear basis
set in this algorithm does not permit a solution which exactly
matches the parameters in the simulation. Given an increased
linear basis set, it is possible that this problem may go away.
In addition, there may be problems that limit quality of fit,
such as time step size in the original data. Thus, the algo-
rithm may be unsuited to analyze the specific data sets ana-
lyzed, but other data sets from similar simulations might pro-
duce significantly better results.

The basis operator method inherits many of the problems
of the basis function method. The problem of artificial con-
straints on the solution due to the choice of basis functions is
potentially more serious than in the basis function method

FIG. 4. n-n dy coefficient from a Hasegawa–Wakatani simulation with flow
shear as a function of radius.
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due to the fact that a low-quality solution will tend to appear
superficially accurate; this is because all solutions from the
basis operator method have a smooth functional form for
their linear terms, whereas poor solutions from the basis
function method appear noisy. However, this problem is
largely solved by the addition of a quality of fit diagnostic. A
poor fit will always have a high chi squared, and this indi-
cates that additional basis operators need to be added to the
model. Too many basis operators could theoretically result in
fitting to noise. Currently the method tends to overconstrain
rather than underconstrain the model. In addition to these
problems, the basis operator creates an additional potential
problem: high-order spatial derivatives are sensitive to noise.
How much of a problem this will be remains unknown at the
present.

Unlike the basis function method, the basis operator
method is far more flexible in its application. An example
of this is the fact that it was practical to apply it to a 128
�128 data set, a task that would have been very computation
intensive for a spectral technique. Also, the ability to analyze
a system with flow shear is something that a spectral method
would not be able to do accurately. In these cases, some loss
of accuracy is a small price to pay for the ability to apply any
sort of detailed quantitative analysis. By converting the con-
cepts of the basis function method to a spatial rather than
spectral representation, we have created an algorithm that
can be used to produce quantitative insights in real turbulent
systems rather than their idealized theoretical analogs. As
such, we have brought this class of algorithms closer to prac-
tical and widespread application. Analysis of experimental

data by this approach is currently underway and should yield
results in the near future.
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