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A different procedure for calculating linear and nonlinear coefficients of model systems for fully
developed turbulence is derived. This procedure can be applied to systems with multiple interacting
fields; in the single-field case the linear coefficients consist of mode frequencies and growth rates.
This method differs from previous methods in the use of a limited set of functions or basis set from
which the nonlinear terms in the turbulence equation are approximated in a series expansion. The
algorithm is derived from this assumption using a least squares approach. This approach has been
tested on simulations of fully developed two-dimensional turbulence and compared to previous
methods. It is able to reconstruct coefficients with several significant figures precision and offers
excellent noise rejection capabilities, and is moreover able to operate using tiny data sets compared
to those required by previous methods.2@05 American Institute of Physics
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I. INTRODUCTION as a linear coefficient. Hence these models cannot capture
) ) o ) nonlinear instability or other anomalous adjustments to the
Bispectral deconvolution analysis is a term applied 0 &nstapility rate or threshold, both of which occur in multifield
class of algorithms which seek to determine the growth rateg,,qeis®** Third. and in practice most important, existing

and nonlinear coupling coefficients of a turbulent systemyignecira| analysis algorithms display high levels of noise

from the thwd-ord_czr statistical moments in its measured ﬂuc'sensitivity, which must be compensated for by using large
tuation spectrun’L In theory,

this offers a variety of a‘?"’*’?‘”f data sets, in particular long time series, to average out ran-
tages over other methods of turbulence analy3|s. This is 'Mdom noise. The requirement for long time series seriously
portant because growth rates are convolved into spectra INB o the usefulness of such algorithms to plasma experi-

nontnwal way. Resea_rchers can now obta|_n _deteyled 'n.formafnents because the short duration of each experimental run or
tion about the functional form of the driving |nstab|lﬁy,

which can then be directly compared to theory. BispectrthOt means that the shot may be over before sufficient data

. . ) . an be gathered; moreover, even if sufficient data can be
deconvolution analysis also isolates nonlinear effects ang 9

processes that enter the spectrum. These include nonline ?thered it is likely that plasma parameters may have

instability and stability, which manifest themselves as finite-° anged signiﬁcantly during.the course of data} sampling,
amplitude-induced changes to the growth Satad the non- such that the bispectral algorithm will be attempting to infer

linear decorrelation rate. Measurement of these quantities oft SiN9le growth rate from a time series during which several
fers access to key effects such as nonlinear damping of zong|fférent growth rates occurred. Al of these factors conspire
flows’ and the scaling of the turbulent decorrelation rate witht® Preduce algorithm output which is problematic for inter-
global quantities such as the magnetic fiéld. preting an experiment. _ _

In practice, the application of bispectral analysis to ex- !N this paper we present a different class of bispectral
periment is limited by a number of factors. First, experiments2nalysis algorithms which solve the latter two problems.
usually fail to provide sufficient data channels for me(,Jmmg_These algorithms feature vastly improved data utilization ef-
ful application of such algorithms. For instance, microscaldiciency and reduced noise sensitivity, allowing application
fluctuations in tokamak experiments are essentially twol0 Short time series data. This in turn not only permits a
dimensional2D), represented by a power spectrum in poloi- typical experiment to produce adequate data for analysis, but
dal and radial wave number, while diagnostic techniquesPermits analysis of transient properties of turbulence, for in-
particularly those capable of accessing the plasma core, hayance analysis of systems where growth rates are themselves
been limited to measurement of variation with respect to glynamical variables. Moreover, the algorithm can be ex-
single wave number. This adds significant uncertainties iiended to multiple fieldsi.e., density, potential, temperature,
inferred growth rate3,and has driven the development of etc) with minimal additional complexity. This potentially
data analysis techniques that will allow determination ofpermits the algorithm to detect certain forms of nonlinear
both poloidal and radial wave number variationSecond, instability, and in general will provide more detailed infor-
bispectral deconvolution analysis has heretofore been remation about the underlying turbulent dynamics than a
stricted to single field models for instability-driven fluctua- single-field model. Because mode plasma motions involve
tion dynamicsl.o Such models are sometimes referred tofas multiple fields, these algorithms will ultimately provide a
models for the way in which instability is incorporated into closer comparison with theory.
the model. They suffer from the limitation that the growth This class of algorithms achieves this great efficiency at
rate is a fixed function of wavenumber that enters the modethe price of requiring additional assumptions about the be-
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havior of the system it is to analyze. As such, great care must V) = LX)+ > le,k2<xk X, X5 (2)
be taken to avoid “confirming” erroneous assumptions. This X “ k=ky “ 1K
problem can be dealt with by allowing the algorithm degrees keky +ko

of freedom which it is not expected to exercise. A noninfini-

tesimal value returned in a corresponding output channel .. . o k 5
would indicate an error in the assumptions. On the other  {(YiXi Xk, = LitXiXi Xi,) + Qe X|Xi X |- 3
hand, the ability to utilize such corroborating information to
improve the efficiency of the algorithm permits the develop-
ment of an entire class of customized algorithms designed t
capture the dynamics of specific types of turbulence or to

Using these equations, Ri&t al. proceeded to solve for
|6k yielding the following:

(XX X)X X))

correct for minor def_icienci(_as in an egperim_ental diagnostic. (X;iYk> -3
The algorlthm we will be d|s.c_ussmg is desgn(_ad to operate - <|Xlek2|2>
under relatively simple conditions. As such, it is to be con- keky ko
sidered as a starting point for further development. Ly= |<XLXk X2 . (4)
* 1 "2
Il. BACKGROUND o = kELZ (X4, X2
k=kq+ky

In this section we discuss the prior art in the field of

bispectral analysis. This consists of the Ritz method devel- This method has some significant disadvantages when
oped by Ritzet al’~ and the modified Ritz method devel- applied to measured fluctuation data. In particular, as noted
oped by Kimet al*®° by Ritz, it can yield unphysically large damping coefficients
For the purposes of discussing these methods, it is usefig all wave numbers. This problem arises because the method
to first go over the notation employed in these papers. Fofloes not take into account nonideal fluctuations, that is to
reasons which will be discussed later we will be using dif-say, deviations of the data from the physics described by the
ferent notation for the newer techniques, however, the strugmodel equation_ Such deviations can arise from noise, mea-
ture of the resulting algorithms is nevertheless similar. surement error, or interactions of the fluctuating quantities

Both the Ritz and modified Ritz methods model turbu-with physical effects outside of the scope of the model. This
lent fluctuations measured in a plasma with a generic turbuissue is addressed by the modified Ritz method.

lence equation whose coefficients are to be determined from
the measurements:

Y=L X+ > Q[jl'kzxklxkz, (1)  B. Modified Ritz method
K=Ky

ket This method was developed by Kiet al® and is de-
=Ktk

scribed in more detail in that paper. The modified Ritz
where X,=¢(k,t) and Y, =¢p(k,t+7),¢ being the measured method begins by assuming that each of the measured spec-
fluctuating quantity as a function of wave number and timetra can be divided into an ideal and nonideal spectrum:

From its form it is evident that this equation is a difference-

equation representation in the temporal domain of a first- X, =8+ X', Y=+ Y}, (5)
order-in-time nonlinear partial differential equation. The co-

efficient L, determines the growth rate of the turbulence,where(X,,Y,) are measured spectra at time+At, respec-

with y= (|L>~1)/7, and the coefficienQ{*? determines tively, (B, o) are the ideal spectra at the same times, and
the nonlinear transfer rate. The goal of these algorithms is toX[", Y1) are the nonideal spectra.

calculateL and Q from fluctuation measurements. From this Kim et al. derive moment equations for the
ideal and nonideal spectra and then drop all cross terms in-
A. Ritz method volving the nonideal spectrum. Unfortunately, this approach

results in equations to which the Millionshchikov approxi-
mation cannot be applied, thus entailing the increased com-
putational cost of calculating the fourth-order moments.
Moreover, since th&'s in Egs.(2) and(3) refer to different
pairsk;,k,, @ matrix notation is needed to represent the equa-
|;ions for the third- and fourth-order moments. This is solved
Yvith the following notation:

The first method for quantitatively estimating such infor-
mation in a plasma was developed by Retzal. in the late
1980s* 3 A review of this method is presented in the Intro-
duction of an article on the modified Ritz method by J. S.
Kim et al?

The Ritz method solves the growth rates and transfe
functions by expanding the model equation in a series o
moment equations, multiplying by and XLlXLZ, respec-
tively. The fourth-order moments in this series are approxi-
mated as products of second-order moments. This approxi-
mation, which is commonly used in analytic turbulence A:((X(l+2i)/2X(I—2i)/2Xr>)a
theory, is known as the Millionshchikov approximation and
is derived by assuming a nearly Gaussian distribution in the .
fluctuating quantities. This results in the following equations: B = ((Xg+2iy2X1-212Y1 )

Q — (Q|(I+2i)/2,(l—2i)/2),

Downloaded 12 May 2005 to 128.104.223.60. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



042303-3 Basis function multifield bispectral deconvolution analysis Phys. Plasmas 12, 042303 (2005)

fluctuating quantity at an intermediate time Xfwere calcu-
lated at eithet or t+At there would be an error iM due to
wherel is the index of the mode wave numbler(k=f(l),  the second derivative in the fluctuating quantity, which
wheref is a linear functio, andi,j are indices of the re- \yould scale withAt™? since there is already a factor Af in
sulting tensors. the denominator. With the centered calculationXathere is
An additional constraint is required to solve this system.an error due to the second derivativeXnwhich is propor-
This constraint is supplied by the assumptlon that the turbutional to At~2, however, the second derivative errorrcan-
lence is steady state, that isy.)=(BiB,)- This allows Us  cels leaving a third derivative error, which is also propor-

F = ((Kgeaiy2Xa-2iy2X 22X 1-2j)2)) »

to obtain the following expressions fby: tional to At™2. This converts the algorithm from first order to
(kab—(B* TEIA second order accuracy with respect to our time step. This
k= * T Te1 (6)  allows a significant improvement in the accuracy of our fits
(BB = (A* ) F7A without a significant increase in algorithm complexity.

From this we can use the model equation to write down
(7)  the error function,

¥=2 Y= 2 [} Yk+EQ.|m XX,

_ (o - (B*)F'B
XY - (A*)TFB]

Combining these gives a formula for ikt
(A*)TFIA-B*)F'B (10)
T By~ (A% )TFIA ®
KPPk This quantity can be minimized by applying the varia-

This method produces more accurate fits than the Rit#ional principle, introducing the quantitie® and 6Q which
method, but a long time series is still required to produce arre infinitesimal variations ild and Q, respectively. For an
accurate fit. Also, like the Ritz method, it is derived from a extremal value the above formula goes from zero to lowest
single-field equation and therefore can only fit spectra conorder in the variational quantities, yielding
taining a single fluctuating quantity. These limitations will be . SR Dk k- vk K k!
addressed by the algorithms presented in this paper. O k"’]'zt' 5D X; (DinXn = Y7 + % Q”m X Xm~)=0

IIl. MULTIFIELD BISPECTRAL ANALYSIS AND LEAST (11
SQUARES DERIVATION e
. . . Dk’knlmEaQ}]Enk XK XK (DE X - Y

Methods of bispectral analysis have so far been moti-
vated by rough statistical arguments based on the properties Y o
of moment equations derived from analytic turbulence + 2 QXA X5) =0. (12
theory. In order to apply such methods to dynamical systems K’
with multiple fields, we will need a more rigorous derivation. This allows us to write down a set of statistical moment

We begin by writing down a generic turbulence equationgqyations,
for multiple fields, ) )
0 ki, DX = (YIS + 2 Qi O X ) = 0,

YE =Y+ Y= DX+ E QUK XK XK (9) "
(13

where Y!‘:[lﬂi‘(t+At)—zﬂf(t)]/At and  XE=[yK(t+At)
P12, Y= (D), N, P(b), etc., with each value 0 kK, mDE(AXK ) = (yie K ¢k
of i corresponding to a particular fiel is the value ofYj ek !
predicted for a given set of coefficients, avidis the error in +2an XA X" X Xy ) =0. (14)
this value. K

The paramete\?ik will then take the place of such that These equations can be written in more compact form by
we will then seek to minimiz&,|x,|2. Note that our coeffi- applying the following definitions:
cientsL and Q from the Ritz and modified Ritz methods K K K KA K *k K
have been replaced by tens@sand Q, reflecting the fact Frpim = X Xp Ko X ) (15
that our model equation permits multiple fields. The growth ) )
rate spectrum can be derived by solving the eigenmodes of ”m = <XkX,k rr',‘ Ky, (16)
the matrixD. Some other changes in notation involve the
construction of the coefficients andY. Y now represents a Jlm = <Yk KXk (17)
derivative rather than a value at a future time step; this is
primarily to control the numb_er of terms in our equatioKs. k — <Xikx>_~k> (18)
is an average of values at different time steps rather thana "
value at a particular time step. This is done in order to reduce Kk _ (Y!‘Xj Ky, (19)

the effect of the time step siz& on the accuracy with which
the derivative is calculated by approximating the value of the ~ Our moment equations now take on the form

Downloaded 12 May 2005 to 128.104.223.60. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



042303-4 D. A. Baver and P. W. Terry Phys. Plasmas 12, 042303 (2005)

0 kin: Dh al, blkn + E Q,| kK’ n||<n|]<’ -0, (20) coefficients_ as a linear _su_perposition ef an incomplete set of
basis functions. In the limit as our basis set approaches com-
pleteness this approach converges to conventional bispectral

0 kK il mDX A]Im "m +E Ekk K kk”_O 21) analysis, albeit by a formula which is cumbersome to ex-

- npim Qinp ecute as an algorithm. In practice, it is the incompleteness of
our basis set which motivates the algorithm: by choosing
Solving Eg.(21) allows us to solve foQ, which functions are or are not allowed to participate in the
Q.n = (FRK )= (g _ Dk akk') 22) basis set, we haye a method of applyagriori assumptions_
P npim im =il about the behavior of our system so as to make our algorithm
Substituting this into Eq(20) yields a formula forD: more efficient in finding a solution which does not violate
Kk o 1nk -1 N those assumptions.
Dl = [1F el = AL (F ) A bl = AR, 7B, Deciding what basis functions to include or not to in-

(23)  clude is not an entirely trivial matter, as different systems
under study will have different inherent behaviors, hence
will require different and possibly customized algorithms to

IV. BASIS FUNCTION ANALYSIS analyze with optimal efficiency. A larger basis set avoids the
As we note from the preceding section, development ofroblem of erroneous assumptions about system behavior,

bispectral analysis to date has tended towards the ideal of\Whereas a smaller basis set results in higher data efficiency

least squares method. At this point we might ask, what furand algorithm speed. One compromise is to include a limited

ther improvements can be made? The notion of a weightegumber of basis functions which blatantly violate @upri-

least squares comes to mind. However, because of the W@fl assumptions; these functions act as a bellwether, indicat-

our error function was defined in the preceding section, eacild when a system is behaving in an unexpected manner. If

mode is minimized individually so a weighting function will one of these functions returns a coefficient which is signifi-
have no effect on the final solution. cantly above noise levels, we can respond by reoptimizing

A closer examination of the least squares derivation othe algorithm to accommodate this information. For instance,
bispectral analysis shows that it suffers from one of the peif we expect an isotropic nonlinearity, maintaining several
rennial problems of least squares optimization: unnecessa@nisotropic functions allows us to determine if anisotropic
degrees of freedom. When a least squares optimization #&rms exist, and if they do a larger set of anisotropic func-
presented with degrees of freedom which have no physicdions can be used to determine their nature.
meaning, it will attempt to improve the quality of fit by ex-
ploiting these degrees of freedom. This results in the problem
of fitting to noise: errors in the original data are carried overa. Derivation
to the solution without being averaged out. Another problem ] ) o
is an increase in the size of the data set required to get any e Pegin by applying the definitions from Sec. Ill, but
solution at all; if the number of data points is less than thel© @ different model equation:
number of Qegrees of freedom', the solution is degenerate a'nd Y!‘ _ Yk " Yk Dk Kk 4 S K Xk’xk K (24)
many possible solutions provide an equally satisfactory fit o # ’“m
from an algorithm point of view, albeit most of them are
unsatisfactory interpretations of the data. An algorithm such  The valuesﬁ im are a predefined basis of functions
as that derived in the preceding section will run into prob-which we use to represent our nonlinearities by projecting
lems with noninvertible matrices or with near noninvertible the nonlinearity onto the basis set, yielding coefficiests
matrices which avoid zero eigenvalues due to noise but proRepresenting our nonlinearities as linear superpositions of
duce anomalously large values for some entries. predefined functions is the fundamental difference between

Conventional bispectral analysis has many unnecessaiiis and previous forms of bispectral analysis. By choosing a
degrees of freedom because it permits each and every intdpasis set which captures the behavior of nonlinearities which
acting triplet to have, in principle, a different and indepen-are likely to arise while using far less functions than the
dent strength of nonlinear coupling. In systems that arewumber of possible interacting triplets, we dramatically re-
highly inhomogenous, or which involve a limited number of duce the number of degrees of freedom in our system. This
modes, this may be appropriate. In most turbulent systemsneans our algorithm is much less likely to fit to noise, and
however, we can safely assume that the nonlinearities wilsince calculation of the nonlinear terms uses data from the
have some recognizable functional form in which the nonlin-entire spectrum of our input data, the calculation of the co-
ear interaction strengths for all of the interacting triples carefficientse,, is likely to be much less sensitive to noise since
be written down as some function kfk’, andk—-k’. All of even a single pair of time steps contains a substantial amount
the nonlinearities that have ever been proposed in turbulena# data with which to average out the effects of random
theory combined represent only a tiny fraction of the avail-noise.
able function space permitted by conventional bispectral Given this model equation, we can now proceed using
analysis. the variational principle as we did in Sec. Ill. This derivation

In basis function bispectral analysis we remove most offollows a slightly different course, however, because our free
the degrees of freedom in the nonlinearity by representing itparameters in the nonlinearity have fewer indices:
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n vilm are removed. As such, the choice of the basis set plays an
important role in the quality of the results.

Fortunately, the functional form of the nonlinear cou-
o e pling between modes is relatively well understood and re-
0w 5%[3;?{:; XXk (D:]X}( - YK stricted to a relatively limited set of possibilities compared to

tki the functional form of the linear terms, the latter being de-

+ S aV’BI:,iI:]’pXIr(]’XI;—k’) -0. (26) 2endent on the details of_ tht_e instability mech_anism involved.

m s a result, we can use insights from analytic plasma turbu-
lence theories to develop a basis set that accurately approxi-
We can then write down the resulting moment equationsmates the nonlinearities found in the system being analyzed.

Oki,j:S 5Di*jkx;k(D_k Xﬁ _ Yik + S awgk,k' Xr’xl:n—k’) fore depend in a nontrivial way on which degrees of freedom
t K’

=0, (25

in compact notation by applying the following definitions: In the results that follow, three types of basis functions
k! KK korokeK o K kek are employed representing three nonlinear forms: simple
Fu= 3 BAROEXERG, @ e, senee.ponin ;

nonlinearities, series nonlinearities, and control nonlineari-

kk' K : . . " . :
ties. The simple nonlinearities are nonlinear terms found in
K _ KK ok K Kok’ our equations whose functional form can be reduced to a
Aij = % Buiim X% X ™), (28) single function which does not depend on the linear coeffi-

cients of the equations, multiplied by a single nonlinear co-
L K ko K kK efficient. These nonlinearities can be introduced directly as
BLij = > /Bml’mwjxl X ) (29) single functions. Series nonlinearities are terms whose func-
K tional form does depend on equation’s linear coefficients,
hence cannot be represented in as a single function without
B,=> B, (300  prior knowledge of the coefficients being solved for. Since
k no single function can represent such a nonlinearity for all
possible combinations of linear coefficients, they are instead

a.!j = <X:(XJ 9, (32) approximated by performing a series expansion in some set
B = (Yo (32) of fu_nctio_n§ which converge to the de_sired function. antrol
ij N nonlinearities are nonlinear terms which do not occur in the
Our moment equations now take on the form equations, nor can be represented as linear combinations of
. terms in the equations. These are included to verify that the
O ki,n:Djfal — b, + > a, A =0, (33  basis set is adequate for the problem it is applied to. If this
m condition is met the control nonlinearities will return small
values whose magnitude is determined by the amount of er-
0 wDfAS; =B, + 2 F a0, =0. (34 rorin our data set, that is to say, they will return zero within
Y the limits of the algorithm’s accuracy. If they return larger
Solving Eq.(34) allows us to solve for: values, this indicates that more functions must be added for
-1 K Ak an accurate fit to emerge.
@, =F (B, = DijA)- (35) It is important to note that the control nonlinearities are

Substituting this into Eq(33) yields a formula forD, intended to serve a diagnostic purpose rather than improving

. KKK Kol ak ctfvkd  atK et the overall quality of fit; their purpose is solely to test the
Dim = (1 jm@jn = AuinFuAuim) (bl _Avian,u,BM)- (36)  appropriateness of a particular basis function to a particular
The inverted terms in parentheses nominally form a sixtffat@ Set. As a result, it is not necessary to include every
rank tensor. This can be inverted, however, by ordering th@0ssible nonlinearity in the control set. This is because the

indices to form an ordinary second rank tensor: difference between the gctualllno'nllnearlty and. the best fit
from the noncontrol nonlinearitigsimple and serigss ex-
M= M!‘r,",'fn, wherel = f(i,n,k’), J=f(I,mKk). pected to have a random orientation with respect to the con-

trol set. The probability that a random vector will be purely

perpendicular to a substantial set of linearly independent
vectors to within acceptable tolerances is extremely small,
hence if the components of the nonlinear interaction vector
parallel to all of the control nonlinearities are close to zero to
within noise levels, we can therefore be reasonably certain
that our choice of basis is adequate.

With this taken under consideration, H§6) represents
the formula which our algorithm will be solving to calculate
D and Eq.(35) represents the formula which our algorithm
will be solving to calculatex onceD has been found.

B. Basis function selection

The algorithm described so far differs from the algo-
_rithm described in the_ preceo!ing section by the choice of aN, RESULTS
incomplete set of basis functions for the nonlinear terms. In
the case where the basis set is complete, the two algorithms In order to test the algorithm derived in the preceding
are equivalent. Since this algorithm relies on removing desection, we apply it to simulation data of fully developed
grees of freedom from the solution, the solution will there-turbulence. By comparing the coefficients derived from the
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algorithm to the coefficients used in the simulation, we are 25 ;
—o— 8 SEpS, no hoise

able to assess the accuracy with which our method can re- —g— 6 steps, 001 noise
. . —o— 16 steps, 001 noise
construct linear growth rates. We also add random noise to 2 42 sieps, 001 noise

some data sets in order to assess the ability of the algorithm
to reconstruct parameters from nonideal data.

5]

/ —+—actual values

coefficient valu

A. Test of the procedure with 2D two-field turbulence

?LA%#;—%“‘

Our first numerical experiment employs a trapped elec- g4 :a:\mﬁ .
tron mode (TEM) model to generate two-field data. The ! \/\/

model employed is a pseudospectral code, and fields in this \\
model represent potential and electron density. As it is a 0_15 14 12 10 =8 6 4 =2 0
two-field model, our linear coefficient matrix has four com- ky

plex components which can be represented by eight real

components. The equations that are used to generate the data. 1. Bispectral output vs simulation input. Simulation data are from a
are as follows: TEM simulation. Displayed data are for the imaginary part of theb
component of the coefficient matrix for modes wij=0.

A - e

(&_tk * wk)(l ~Ve+kp) = VeverTi— )
B Kk’ _ " HkK'2

k/

K.k’ ;2
B = (kXK' -2k,
X k- 2)kl2¢k/ d)k_k/ = 0, (37) 10.pd¢ ( ) X

B Bfnon= (KX K - 2k,

ﬂnk _ .
— + Y+ VerdMic — i) + ikywp(L + ane) ¢y

ot ) . | pk?
By = (kKX K -z)k'zsin<‘/2’—), 1=1,15. (39
+Cepsy (K X K- 2T e = 0. (38) max
K In this basis set, function 2 is a simple nonlinearity cho-

In theseve is the trapped particle fraction is the ~ Sen to represent the X B nonlinearity in our model. Func-
electron detrapping rate is ion gyroradiusg is a numeri- ~ tions 3, 4, and 12-26 form a series nonlinearity which rep-
cal factor equal t(ﬁ, 7. is the ratio of temperature to density res_ents the polan_zathn drift nonlinearity in our model. _A
scale lengthsy, is the diamagnetic drift frequency, aogis ~ S€res representgtlon is necessary bfcausze of t.he functional
the sound speed. The factgg is an artificial damping term ~dependence of this nonlinearity 0h-e+k?pg), which can-
introduced to enable saturation on a grid scale too small t§0t be represented as a single function without prior knowl-
incorporate physically realistic damping mechanisms. In thigdge of the value of/e. The remaining termsl1,5-11 are
simulation, y, is hyperviscous at higk and forms a Gauss- control functions.

ian at lowk. Figure 1 shows the results of one of those components
The version of the algorithm applied to these data emOVver a select set of wave numbers. The wave numbers are at
ployed the following basis set: k=0 for different values ok, and the coefficient shown is
) the imaginary part of thep-¢» component(potential self-
Blf,'fwn =(kxk' -2, reaction of the coefficient matrix. This particular component
is dominated by the diamagnetic drift frequency with disper-
Bg:';]’(bn: (kXK -2), sive terms due to finite Larmor radius effects.

Marked with circles and bars and situated at the top of
Fig. 1 fork, values of -4 through —12 are the lines for the
actual values calculated from the input parameters of the
simulation and the algorithm output for three realizations

B s = (kX K - 2K'2,

kk' _ 1 S\1L1212 R . . . .
Bippg= (KX K -2K'KE, (pairs of time stepsof data with no added noise. These lines
) coincide with each other, indicating excellent agreement be-
,BE"'r‘W,: (k X k" -2)k'?, tween algorithm output and simulation input. In this case, the
algorithm was able to reconstruct the original coefficients to
ﬁg’,lf,s'nn: (kX K -2)k'?, several significant figures’ precision. That it was able to do

so with only three realizations is significant when compared
to conventional bispectral algorithms, which require thou-
sands of realizations.

e s The other three lines are fits involving varying numbers
Bg ppg = (KXK' - 2)K"K,, of realizations, ranging from 3 to 21, in which the data

Bk = (kX K - 2)K'2,
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sample has been contaminated with white noise. The noise il 2
this case is weighted in proportion to the average fluctuation
level at each wave number, and for these cases its averac ' ;’%\
magnitude is 0.1% of the fluctuation levélAs we can see, . = /G\
this causes a significant reduction in the accuracy of the fit \ /
for three realizations, however, with a modest increase in theg -
number of realizations the quality of fit rapidly improves. £ \ ,
* I
B. Test of the procedure with 2D one-field 3
turbulence —Ertmpmsseaes |\ X
. . 4 | —e— basis method, .01 noise 20 realizations
In our next numerical experiment, we seek to compare —s¢— basis method, .01 nhoise 2000 realizations
the accuracy of the basis function form of bispectral analysis s s i i
to previous forms of bispectral analysis, in this case the Ritz 2 o 2 4 5 8 10 12
method. Since the Ritz method applies only to single-field ky

data, we employ a single-field version of the basis function _ ' _ o

method. The source of our simulation data is a somewh IG. 2. Comparlson of basis function and Ritz blspectral methods on one-
. . . . leld data. Displayed are growth rates for modes with 0.

more generic single-field spectral code; since we are only
interested in the accuracy with which our algorithm can re-

construct the simulation coefficients, our growth and fre-
quency spectra are chosen more or less arbitrarily within thg, yhis test we are interested in a noise sensitivity compari-

constraint of achieving a stable saturated state rather thaly, ot a proof of the validity of the algorithm. This does
attempting to model any particular physical system. Th&gg it in 2 small basis set, which may artificially reduce noise
simulation code does employ two nonlinearitiéensity and  gensitivity somewhat compared to the algorithm with a more

vorticity advection. realistic basis set, however, for the purposes of a general
The equations used to generate the data are loosel%’omparison we can accept this limitation.

based on the Terry—Horton equatlb?\and are as follows: The basis function method was tested for three realiza-

an i 1 oA tions without noise and for between 3 and 2000 realizations
St kypn =y + Vedikyn + LlEE (kX k" -2)(ky with 1% noise. Compared to this are the results from the Ritz
K method for 2000 realizations and no noise. The basis func-
- k;)nk, N + Lzz (KXK' 2K 2neNw.  (40) tion method produces accyrate fits to seyeral significant fig-

K ures in the absence of noise. Adding noise causes some de-

o ) viations from the correct output, but the overall quality of fit

The coefficientd.; andL, are strengths assigned to the js stjll good even for three realizations.
nonlinearities, which represefit< B and polarization drift This particular data set proved intractable to the Ritz
nonlinearities, respectively. The coefficiedf controls i method, possibly on account of violating the Millionsh-

what parts of tr_]e spectrum this term is active. It is_ Set t0 &hjkov approximation. This can be seen by the poor quality
constant value in a rectangular regionka$pace and is zero f fit for k,> 4.

elsewhere. The termy, is artificial damping, as with the
TEM model, however, since we are interested here in pro-

viding data to test a diagnostic algorithm we are simply in-

terested in generating a stable saturated state, not in model- Test of the procedure with time-varying
ing any particular physics. As a result, in certain parts of thecoefficients

spectrum this term is given a negative value and this in turn
constitutes the main source of free energy input in this simu
lation. It is hyperviscous at higk but is given a constant

As we saw in the preceding sections, the basis function
method is capable of reconstructing linear coefficients from
fully developed turbulence data using extremely short time

Turbulence with time-varying coefficients can occur

pared. . . . whenever the physics determining the coefficients of the tur-
The version (.)f the a_lgonthm applied to these data €Mpulence equations are changing in time. This can be due to

ployed the following basis set: varying pressure or temperature gradients, such as might oc-

B = (kx K -2)k'2, cur duringlL- to H-mode transitions and vice versa, sporadic
transport events such as sawtooth crashes or Eedtfe-
'§’k' = (kX K -2k, (41) localized modesor general adjustment of such gradients due

to the turbulence itself. It can also be due to nonlinear insta-
This basis consists entirely of simple nonlinearitiesbility in which the growth rate changes as the turbulence
found in our model. This was chosen out of expedience sincesaches finite amplitude.
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0.92 of the time window is smaller than the time scale over which
,/_ the coefficients vary. In the event that the time window is
o / longer than the time scale of variation, the algorithm simply
088 filters out the high frequency components of the signal.
/ Moreover, this is much better performance than we could
3 o8 have expected from a system with random noise added to
% bed / achieve an equivalent residuglsquared.
0.82 /@/
o8 VI. SUMMARY AND DISCUSSION
—o—clata value
0.78 T
5 4 K 2 - 0 1 2 We have derived a different procedure for estimating lin-

ime offset ear growth rates and nonlinear transfer rates of turbulent sys-
_ o _ tems from experimental data. This procedure is obtained by
FIG. 3. Bispectral output of imaginary part gk ¢ component of the finear first representing the nonlinear coefficients as a superposition
coefficient matrix ak,=0, k,=1.3 over different time windows. Time offset - . . ;
is measured from an abrupt transitionvig. Each time window contains 32 Of @ limited set of functions, thus reducing their degrees of
realizations beginning with the offset time. freedom. An algorithm can then be derived from this model
equation using a least squares minimization. This procedure
permits analysis of turbulence with multiple interacting fields
without loss of generality.

Introducing time-varying coefficients presents some po-  This method has been tested against simulation data to
tential problems for a bispectral algorithm. Because there isneasure its ability to reconstruct model coefficients. Through
no exact fit of constant coefficients to a data set generated lipese tests it is also compared to previous methods for esti-
time-varying coefficients, the fit which the algorithm actually mating growth rates and nonlinear transfer rates from data. In
produces will have a large residyakquared. This is similar these tests this method produces vastly improved perfor-
to the problem presented by attempting to solve a systermance. It is capable of producing accurate fits using nearly
with extreme levels of added noise. As such, the actual resuthree orders of magnitude less data, even in the presence of
from such a fit will depend in a nontrivial way on the struc- modest levels of noise. While a quantitative reduction in
ture of the algorithm, and thus the quality of its performancenoise sensitivity has not yet been verified, the capacity to fit
cannot be easily extrapolated from the much simpler case afsing such small data sets in the presence of noise strongly
static coefficients. suggests this is the case. Its quality of fit in the absence of

To test the capacity of the algorithm to handle time-noise is also superior, recovering simulation coefficients to
varying coefficients, we use our TEM model to construct aseveral significant figures accuracy.
simple case of this. The simulation is run until it reaches  These improvements in the capabilities of bispectral
saturation with one value of the diamagnetic drift velocity. A analysis permit its application to more complicated turbulent
second simulation using a different drift velocity is run usingdynamics than would have previously been possible. Be-
the final values from the first simulation as starting valuescause it can be applied to multiple fields without loss of
and the data from the two simulations is spliced together t@enerality, it is not necessary to assume that a single field is
form a single data set. This data set now contains an abrugufficient to characterize observed turbulence. The capacity
transition in the diamagnetic velocity, giving certain coeffi- to apply this approach to multiple fields is in practice limited
cients a step-function dependence in time. by the availability of correlated multifield data. In the event

Figure 3 shows the results for a particular valu&gdind  that such data becomes available this approach provides a
k, when the basis function method is applied to this data setool for extracting different types of information from it, and
The basis function method is applied to a series of 32moreover the availability of such a data analysis technique
realization time windows, each starting at a progressivelyprovides an incentive for the development of such diagnos-
later point in the data set. The x-axis shows the starting timéics.
of the window, with the transition in the coefficient value This method is also capable of analyzing transient be-
occurring att=0. Each window therefore contains different havior. This permits the study of turbulent processes in tran-
numbers of time steps before and after the transition. sient phenomena, such as ELMs, sawtooth crashes, transi-

As we can see from the figure, the algorithm returns theions between different confinement regimes, and so forth. It
actual values from the simulation, as we would expect fromalso permits the study of nonlinear instability. Because it can
our experience in the static case. As the time window crossdse applied to multiple fields, this permits the detection of
the transition, the returned coefficient varies smoothly fromcertain types of nonlinear instability. Regardless of the
the initial value to the final value. This is remarkably close tomechanism of the instability such a phenomenon can be de-
the ideal behavior of a weighted average between the twtected by observing the variation of growth rates with turbu-
cases. This is a promising result, since the ability to return atence fluctuation level.
average value over a time window is good enough to analyze As of this time, this method has not been applied to
a system with time-varying coefficients, provided the widthactual experimental data. The quality of reconstructed
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