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A different procedure for calculating linear and nonlinear coefficients of model systems for fully
developed turbulence is derived. This procedure can be applied to systems with multiple interacting
fields; in the single-field case the linear coefficients consist of mode frequencies and growth rates.
This method differs from previous methods in the use of a limited set of functions or basis set from
which the nonlinear terms in the turbulence equation are approximated in a series expansion. The
algorithm is derived from this assumption using a least squares approach. This approach has been
tested on simulations of fully developed two-dimensional turbulence and compared to previous
methods. It is able to reconstruct coefficients with several significant figures precision and offers
excellent noise rejection capabilities, and is moreover able to operate using tiny data sets compared
to those required by previous methods. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1854156g

I. INTRODUCTION

Bispectral deconvolution analysis is a term applied to a
class of algorithms which seek to determine the growth rates
and nonlinear coupling coefficients of a turbulent system
from the third-order statistical moments in its measured fluc-
tuation spectrum.1–4 In theory, this offers a variety of advan-
tages over other methods of turbulence analysis. This is im-
portant because growth rates are convolved into spectra in a
nontrivial way. Researchers can now obtain detailed informa-
tion about the functional form of the driving instability,5

which can then be directly compared to theory. Bispectral
deconvolution analysis also isolates nonlinear effects and
processes that enter the spectrum. These include nonlinear
instability and stability, which manifest themselves as finite-
amplitude-induced changes to the growth rate6 and the non-
linear decorrelation rate. Measurement of these quantities of-
fers access to key effects such as nonlinear damping of zonal
flows7 and the scaling of the turbulent decorrelation rate with
global quantities such as the magnetic field.8

In practice, the application of bispectral analysis to ex-
periment is limited by a number of factors. First, experiments
usually fail to provide sufficient data channels for meaning-
ful application of such algorithms. For instance, microscale
fluctuations in tokamak experiments are essentially two-
dimensionals2Dd, represented by a power spectrum in poloi-
dal and radial wave number, while diagnostic techniques,
particularly those capable of accessing the plasma core, have
been limited to measurement of variation with respect to a
single wave number. This adds significant uncertainties in
inferred growth rates,5 and has driven the development of
data analysis techniques that will allow determination of
both poloidal and radial wave number variations.9 Second,
bispectral deconvolution analysis has heretofore been re-
stricted to single field models for instability-driven fluctua-
tion dynamics.10 Such models are sometimes referred to asid
models for the way in which instability is incorporated into
the model. They suffer from the limitation that the growth
rate is a fixed function of wavenumber that enters the model

as a linear coefficient. Hence these models cannot capture
nonlinear instability or other anomalous adjustments to the
instability rate or threshold, both of which occur in multifield
models.6,11 Third, and in practice most important, existing
bispectral analysis algorithms display high levels of noise
sensitivity, which must be compensated for by using large
data sets, in particular long time series, to average out ran-
dom noise. The requirement for long time series seriously
limits the usefulness of such algorithms to plasma experi-
ments because the short duration of each experimental run or
shot means that the shot may be over before sufficient data
can be gathered; moreover, even if sufficient data can be
gathered it is likely that plasma parameters may have
changed significantly during the course of data sampling,
such that the bispectral algorithm will be attempting to infer
a single growth rate from a time series during which several
different growth rates occurred. All of these factors conspire
to produce algorithm output which is problematic for inter-
preting an experiment.

In this paper we present a different class of bispectral
analysis algorithms which solve the latter two problems.
These algorithms feature vastly improved data utilization ef-
ficiency and reduced noise sensitivity, allowing application
to short time series data. This in turn not only permits a
typical experiment to produce adequate data for analysis, but
permits analysis of transient properties of turbulence, for in-
stance analysis of systems where growth rates are themselves
dynamical variables. Moreover, the algorithm can be ex-
tended to multiple fieldssi.e., density, potential, temperature,
etc.d with minimal additional complexity. This potentially
permits the algorithm to detect certain forms of nonlinear
instability, and in general will provide more detailed infor-
mation about the underlying turbulent dynamics than a
single-field model. Because mode plasma motions involve
multiple fields, these algorithms will ultimately provide a
closer comparison with theory.

This class of algorithms achieves this great efficiency at
the price of requiring additional assumptions about the be-
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havior of the system it is to analyze. As such, great care must
be taken to avoid “confirming” erroneous assumptions. This
problem can be dealt with by allowing the algorithm degrees
of freedom which it is not expected to exercise. A noninfini-
tesimal value returned in a corresponding output channel
would indicate an error in the assumptions. On the other
hand, the ability to utilize such corroborating information to
improve the efficiency of the algorithm permits the develop-
ment of an entire class of customized algorithms designed to
capture the dynamics of specific types of turbulence or to
correct for minor deficiencies in an experimental diagnostic.
The algorithm we will be discussing is designed to operate
under relatively simple conditions. As such, it is to be con-
sidered as a starting point for further development.

II. BACKGROUND

In this section we discuss the prior art in the field of
bispectral analysis. This consists of the Ritz method devel-
oped by Ritzet al.1–3 and the modified Ritz method devel-
oped by Kimet al.4,5

For the purposes of discussing these methods, it is useful
to first go over the notation employed in these papers. For
reasons which will be discussed later we will be using dif-
ferent notation for the newer techniques, however, the struc-
ture of the resulting algorithms is nevertheless similar.

Both the Ritz and modified Ritz methods model turbu-
lent fluctuations measured in a plasma with a generic turbu-
lence equation whose coefficients are to be determined from
the measurements:

Yk = LkXk + o
k1ùk2

k=k1+k2

Qk
k1,k2Xk1

Xk2
, s1d

whereXk=fsk,td and Yk=fsk,t+td ,f being the measured
fluctuating quantity as a function of wave number and time.
From its form it is evident that this equation is a difference-
equation representation in the temporal domain of a first-
order-in-time nonlinear partial differential equation. The co-
efficient Lk determines the growth rate of the turbulence,
with gk<suLku2−1d /t, and the coefficientQk

k1,k2 determines
the nonlinear transfer rate. The goal of these algorithms is to
calculateL andQ from fluctuation measurements.

A. Ritz method

The first method for quantitatively estimating such infor-
mation in a plasma was developed by Ritzet al. in the late
1980s.1–3 A review of this method is presented in the Intro-
duction of an article on the modified Ritz method by J. S.
Kim et al.4

The Ritz method solves the growth rates and transfer
functions by expanding the model equation in a series of
moment equations, multiplying byXk

* and Xk1

* Xk2

* , respec-
tively. The fourth-order moments in this series are approxi-
mated as products of second-order moments. This approxi-
mation, which is commonly used in analytic turbulence
theory, is known as the Millionshchikov approximation and
is derived by assuming a nearly Gaussian distribution in the
fluctuating quantities. This results in the following equations:

kYkXk
*l = LkkXkXk

*l + o
k1ùk2

k=k1+k2

Qk
k1,k2kXk1

Xk2
Xk

*l, s2d

kYkXk1

* Xk2

* l = LkkXkXk1

* Xk2

* l + Qk
k1,k2kuXk1

Xk2
u2l. s3d

Using these equations, Ritzet al. proceeded to solve for
Lk yielding the following:

Lk =

kXk
*Ykl − o

k1ùk2

k=k1+k2

kXk
*Xk1

Xk2
lkYkXk1

* Xk2

* l

kuXk1
Xk2

u2l

kXk
*Ykl − o

k1ùk2

k=k1+k2

ukXk
*Xk1

Xk2
lu2

kuXk1
Xk2

u2l

. s4d

This method has some significant disadvantages when
applied to measured fluctuation data. In particular, as noted
by Ritz, it can yield unphysically large damping coefficients
at all wave numbers. This problem arises because the method
does not take into account nonideal fluctuations, that is to
say, deviations of the data from the physics described by the
model equation. Such deviations can arise from noise, mea-
surement error, or interactions of the fluctuating quantities
with physical effects outside of the scope of the model. This
issue is addressed by the modified Ritz method.

B. Modified Ritz method

This method was developed by Kimet al.4 and is de-
scribed in more detail in that paper. The modified Ritz
method begins by assuming that each of the measured spec-
tra can be divided into an ideal and nonideal spectrum:

Xk = bk + Xk
ni, Yk = ak + Yk

ni, s5d

wheresXk,Ykd are measured spectra at timet ,t+Dt, respec-
tively, sbk,akd are the ideal spectra at the same times, and
sXk

ni ,Yk
nid are the nonideal spectra.

From this Kim et al. derive moment equations for the
ideal and nonideal spectra and then drop all cross terms in-
volving the nonideal spectrum. Unfortunately, this approach
results in equations to which the Millionshchikov approxi-
mation cannot be applied, thus entailing the increased com-
putational cost of calculating the fourth-order moments.
Moreover, since theQ’s in Eqs.s2d ands3d refer to different
pairsk1,k2, a matrix notation is needed to represent the equa-
tions for the third- and fourth-order moments. This is solved
with the following notation:

Q = sQl
sl+2id/2,sl−2id/2d,

A = skXsl+2id/2Xsl−2id/2Xl
*ld,

B = skXsl+2id/2Xsl−2id/2Yl
*ld,
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F = skXsl+2id/2Xsl−2id/2Xsl+2jd/2Xsl−2jd/2ld,

where l is the index of the mode wave numberk sk= fsld,
where f is a linear functiond, and i , j are indices of the re-
sulting tensors.

An additional constraint is required to solve this system.
This constraint is supplied by the assumption that the turbu-
lence is steady state, that is,kakak

*l=kbkbk
*l. This allows us

to obtain the following expressions forLk:

Lk =
kYkXk

*l − sB * dTF−1A

kbkbk
*l − sA * dTF−1A

, s6d

Lk =
kakak

*l − sB * dTF−1B

kXkYk
*l − sA * dTF−1B

. s7d

Combining these gives a formula forg

gk =
sA * dTF−1A − sB * dTF−1B

kbkbk
*l − sA * dTF−1A

. s8d

This method produces more accurate fits than the Ritz
method, but a long time series is still required to produce an
accurate fit. Also, like the Ritz method, it is derived from a
single-field equation and therefore can only fit spectra con-
taining a single fluctuating quantity. These limitations will be
addressed by the algorithms presented in this paper.

III. MULTIFIELD BISPECTRAL ANALYSIS AND LEAST
SQUARES DERIVATION

Methods of bispectral analysis have so far been moti-
vated by rough statistical arguments based on the properties
of moment equations derived from analytic turbulence
theory. In order to apply such methods to dynamical systems
with multiple fields, we will need a more rigorous derivation.

We begin by writing down a generic turbulence equation
for multiple fields,

Ŷi
k ; Ỹi

k + Yi
k = Dij

kXi
k + o

k8

Qilm
k,k8Xl

k8Xm
k−k8, s9d

where Yi
k=fci

kst+Dtd−ci
kstdg /Dt and Xi

k=fci
kst+Dtd

+ci
kstdg /2. ci

kstd;fkstd , nkstd , Pkstd, etc., with each value

of i corresponding to a particular field.Ŷik is the value ofYik

predicted for a given set of coefficients, andỸik is the error in
this value.

The parameterỸik will then take the place ofx such that
we will then seek to minimizeokuxku2. Note that our coeffi-
cients L and Q from the Ritz and modified Ritz methods
have been replaced by tensorsD and Q, reflecting the fact
that our model equation permits multiple fields. The growth
rate spectrum can be derived by solving the eigenmodes of
the matrix D. Some other changes in notation involve the
construction of the coefficientsX andY. Y now represents a
derivative rather than a value at a future time step; this is
primarily to control the number of terms in our equations.X
is an average of values at different time steps rather than a
value at a particular time step. This is done in order to reduce
the effect of the time step sizeDt on the accuracy with which
the derivative is calculated by approximating the value of the

fluctuating quantity at an intermediate time. IfX were calcu-
lated at eithert or t+Dt there would be an error inY due to
the second derivative in the fluctuating quantity, which
would scale withDt−1 since there is already a factor ofDt in
the denominator. With the centered calculation ofX there is
an error due to the second derivative inX, which is propor-
tional toDt−2, however, the second derivative error inY can-
cels leaving a third derivative error, which is also propor-
tional toDt−2. This converts the algorithm from first order to
second order accuracy with respect to our time step. This
allows a significant improvement in the accuracy of our fits
without a significant increase in algorithm complexity.

From this we can use the model equation to write down
the error function,

x2 = o
i,k,t

Ỹi
kỸi

−k = o
i,k,t

uDij
kXj

k − Yi
k + o

k8

Qilm
k,k8Xl

k8Xm
k−k8u2.

s10d

This quantity can be minimized by applying the varia-
tional principle, introducing the quantitiesdD anddQ which
are infinitesimal variations inD andQ, respectively. For an
extremal value the above formula goes from zero to lowest
order in the variational quantities, yielding

∀ k,i, j :o
t

dDij
*kXj

*ksDin
k Xn

k − Yi
k + o

k8

Qilm
k,k8Xl

k8Xm
k−k8d = 0

s11d

∀ k8,k,i,l,m:o
t

dQilm
*k,k8Xl

*k8Xm
*k−k8sDij

kXj
k − Yi

k

+ o
k9

Qinp
k,k9Xn

k9Xp
k−k9d = 0. s12d

This allows us to write down a set of statistical moment
equations,

∀ k,i,n:Dij
k kXj

kXn
*kl − kYi

kXn
*kl + o

k8

Qilm
k,k8kXn

*kXl
k8Xm

k−k8l = 0,

s13d

∀ k,k8,i,l,m:Dij
k kXj

kXl
*k8Xm

*k−k8l − kYi
kXl

*k8Xm
*k−k8l

+ o
k9

Qinp
k,k9kXn

k9Xp
k−k9Xl

*k8Xm
*k−k8l = 0. s14d

These equations can be written in more compact form by
applying the following definitions:

Fnplm
k,k8,k9 ; kXn

k9Xp
k−k9Xl

*k8Xm
*k−k8l, s15d

Ajlm
k,k8 ; kXj

kXl
*k8Xm

*k−k8l, s16d

Bjlm
k,k8 ; kYj

kXl
*k8Xm

*k−k8l, s17d

aij
k ; kXi

kXj
*kl, s18d

bij
k ; kYi

kXj
*kl. s19d

Our moment equations now take on the form
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∀ k,i,n:Dij
kajn

k − bin
k + o

k8

Qilm
k,k8Anlm

*k,k8 = 0, s20d

∀ k,k8,i,l,m:Dij
kAjlm

k,k8 − Bilm
k,k8 + o

k9

Fnplm
k,k8,k9Qinp

k,k9 = 0. s21d

Solving Eq.s21d allows us to solve forQ,

Qinp
k,k8 = sFnplm

k,k8,k9d−1sBilm
k,k8 − Dij

kAjlm
k,k8d. s22d

Substituting this into Eq.s20d yields a formula forD:

Dlm
k = fI ij ,lm

k8,k ajn
k8 − Anin

*k8sFnmd−1Amlm
k g−1fbin

k8 − Anin
*k8sFnmd−1Bmg.

s23d

IV. BASIS FUNCTION ANALYSIS

As we note from the preceding section, development of
bispectral analysis to date has tended towards the ideal of a
least squares method. At this point we might ask, what fur-
ther improvements can be made? The notion of a weighted
least squares comes to mind. However, because of the way
our error function was defined in the preceding section, each
mode is minimized individually so a weighting function will
have no effect on the final solution.

A closer examination of the least squares derivation of
bispectral analysis shows that it suffers from one of the pe-
rennial problems of least squares optimization: unnecessary
degrees of freedom. When a least squares optimization is
presented with degrees of freedom which have no physical
meaning, it will attempt to improve the quality of fit by ex-
ploiting these degrees of freedom. This results in the problem
of fitting to noise: errors in the original data are carried over
to the solution without being averaged out. Another problem
is an increase in the size of the data set required to get any
solution at all; if the number of data points is less than the
number of degrees of freedom, the solution is degenerate and
many possible solutions provide an equally satisfactory fit
from an algorithm point of view, albeit most of them are
unsatisfactory interpretations of the data. An algorithm such
as that derived in the preceding section will run into prob-
lems with noninvertible matrices or with near noninvertible
matrices which avoid zero eigenvalues due to noise but pro-
duce anomalously large values for some entries.

Conventional bispectral analysis has many unnecessary
degrees of freedom because it permits each and every inter-
acting triplet to have, in principle, a different and indepen-
dent strength of nonlinear coupling. In systems that are
highly inhomogenous, or which involve a limited number of
modes, this may be appropriate. In most turbulent systems,
however, we can safely assume that the nonlinearities will
have some recognizable functional form in which the nonlin-
ear interaction strengths for all of the interacting triples can
be written down as some function ofk,k8, andk−k8. All of
the nonlinearities that have ever been proposed in turbulence
theory combined represent only a tiny fraction of the avail-
able function space permitted by conventional bispectral
analysis.

In basis function bispectral analysis we remove most of
the degrees of freedom in the nonlinearity by representing its

coefficients as a linear superposition of an incomplete set of
basis functions. In the limit as our basis set approaches com-
pleteness this approach converges to conventional bispectral
analysis, albeit by a formula which is cumbersome to ex-
ecute as an algorithm. In practice, it is the incompleteness of
our basis set which motivates the algorithm: by choosing
which functions are or are not allowed to participate in the
basis set, we have a method of applyinga priori assumptions
about the behavior of our system so as to make our algorithm
more efficient in finding a solution which does not violate
those assumptions.

Deciding what basis functions to include or not to in-
clude is not an entirely trivial matter, as different systems
under study will have different inherent behaviors, hence
will require different and possibly customized algorithms to
analyze with optimal efficiency. A larger basis set avoids the
problem of erroneous assumptions about system behavior,
whereas a smaller basis set results in higher data efficiency
and algorithm speed. One compromise is to include a limited
number of basis functions which blatantly violate oura pri-
ori assumptions; these functions act as a bellwether, indicat-
ing when a system is behaving in an unexpected manner. If
one of these functions returns a coefficient which is signifi-
cantly above noise levels, we can respond by reoptimizing
the algorithm to accommodate this information. For instance,
if we expect an isotropic nonlinearity, maintaining several
anisotropic functions allows us to determine if anisotropic
terms exist, and if they do a larger set of anisotropic func-
tions can be used to determine their nature.

A. Derivation

We begin by applying the definitions from Sec. III, but
to a different model equation:

Ŷi
k ; Ỹi

k + Yi
k = Dij

kXi
k + o

k8

ambmilm
k,k8 Xl

k8Xm
k−k8. s24d

The valuesbmilm
k,k8 are a predefined basis of functions

which we use to represent our nonlinearities by projecting
the nonlinearity onto the basis set, yielding coefficientsam.
Representing our nonlinearities as linear superpositions of
predefined functions is the fundamental difference between
this and previous forms of bispectral analysis. By choosing a
basis set which captures the behavior of nonlinearities which
are likely to arise while using far less functions than the
number of possible interacting triplets, we dramatically re-
duce the number of degrees of freedom in our system. This
means our algorithm is much less likely to fit to noise, and
since calculation of the nonlinear terms uses data from the
entire spectrum of our input data, the calculation of the co-
efficientsam is likely to be much less sensitive to noise since
even a single pair of time steps contains a substantial amount
of data with which to average out the effects of random
noise.

Given this model equation, we can now proceed using
the variational principle as we did in Sec. III. This derivation
follows a slightly different course, however, because our free
parameters in the nonlinearity have fewer indices:
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∀ k,i, j :o
t

dDij
*kXj

*ksDin
k Xn

k − Yi
k + o

k8

anbnilm
k,k8 Xl

k8Xm
k−k8d

= 0, s25d

∀ m:o
t,k,i

dam
* bmilm

*k,k8Xl
*k8Xm

*k−k8sDij
kXj

k − Yi
k

+ o
k8

anbninp
k,k8 Xn

k8Xp
k−k8d = 0. s26d

We can then write down the resulting moment equations
in compact notation by applying the following definitions:

Fmn ; o
k,k8,k9,i

bmilm
*k,k8bninp

k,k9 kXn
k9Xp

k−k9Xl
*k8Xm

*k−k8l, s27d

Ami j
k ; o

k8

bmilm
*k,k8kXj

kXl
*k8Xm

*k−k8l, s28d

Bmi j
k ; o

k8

bmilm
*k,k8kYj

kXl
*k8Xm

*k−k8l, s29d

Bm = o
k

Bmii
k , s30d

aij
k ; kXi

kXj
*kl, s31d

bij
k ; kYi

kXj
*kl. s32d

Our moment equations now take on the form

∀ k,i,n:Dij
kajn

k − bin
k + o

m

amAmin
*k = 0, s33d

∀ m:Dij
kAmi j

k − Bm + o
n

Fmnanu = 0. s34d

Solving Eq.s34d allows us to solve fora:

an = Fnm
−1sBm − Dij

kAmi j
k d. s35d

Substituting this into Eq.s33d yields a formula forD,

Dlm
k = sI ij ,lm

k8,k ajn
k8 − Anin

*k8Fnm
−1Amlm

k d−1sbin
k8 − Anin

*k8Fnm
−1Bmd . s36d

The inverted terms in parentheses nominally form a sixth
rank tensor. This can be inverted, however, by ordering the
indices to form an ordinary second rank tensor:

MIJ ; Min,lm
k8,k , whereI = fsi,n,k8d, J = fsl,m,kd.

With this taken under consideration, Eq.s36d represents
the formula which our algorithm will be solving to calculate
D and Eq.s35d represents the formula which our algorithm
will be solving to calculatea onceD has been found.

B. Basis function selection

The algorithm described so far differs from the algo-
rithm described in the preceding section by the choice of an
incomplete set of basis functions for the nonlinear terms. In
the case where the basis set is complete, the two algorithms
are equivalent. Since this algorithm relies on removing de-
grees of freedom from the solution, the solution will there-

fore depend in a nontrivial way on which degrees of freedom
are removed. As such, the choice of the basis set plays an
important role in the quality of the results.

Fortunately, the functional form of the nonlinear cou-
pling between modes is relatively well understood and re-
stricted to a relatively limited set of possibilities compared to
the functional form of the linear terms, the latter being de-
pendent on the details of the instability mechanism involved.
As a result, we can use insights from analytic plasma turbu-
lence theories to develop a basis set that accurately approxi-
mates the nonlinearities found in the system being analyzed.

In the results that follow, three types of basis functions
are employed representing three nonlinear forms: simple
nonlinearities, series nonlinearities, and control nonlineari-
ties. The simple nonlinearities are nonlinear terms found in
our equations whose functional form can be reduced to a
single function which does not depend on the linear coeffi-
cients of the equations, multiplied by a single nonlinear co-
efficient. These nonlinearities can be introduced directly as
single functions. Series nonlinearities are terms whose func-
tional form does depend on equation’s linear coefficients,
hence cannot be represented in as a single function without
prior knowledge of the coefficients being solved for. Since
no single function can represent such a nonlinearity for all
possible combinations of linear coefficients, they are instead
approximated by performing a series expansion in some set
of functions which converge to the desired function. Control
nonlinearities are nonlinear terms which do not occur in the
equations, nor can be represented as linear combinations of
terms in the equations. These are included to verify that the
basis set is adequate for the problem it is applied to. If this
condition is met the control nonlinearities will return small
values whose magnitude is determined by the amount of er-
ror in our data set, that is to say, they will return zero within
the limits of the algorithm’s accuracy. If they return larger
values, this indicates that more functions must be added for
an accurate fit to emerge.

It is important to note that the control nonlinearities are
intended to serve a diagnostic purpose rather than improving
the overall quality of fit; their purpose is solely to test the
appropriateness of a particular basis function to a particular
data set. As a result, it is not necessary to include every
possible nonlinearity in the control set. This is because the
difference between the actual nonlinearity and the best fit
from the noncontrol nonlinearitiesssimple and seriesd is ex-
pected to have a random orientation with respect to the con-
trol set. The probability that a random vector will be purely
perpendicular to a substantial set of linearly independent
vectors to within acceptable tolerances is extremely small,
hence if the components of the nonlinear interaction vector
parallel to all of the control nonlinearities are close to zero to
within noise levels, we can therefore be reasonably certain
that our choice of basis is adequate.

V. RESULTS

In order to test the algorithm derived in the preceding
section, we apply it to simulation data of fully developed
turbulence. By comparing the coefficients derived from the
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algorithm to the coefficients used in the simulation, we are
able to assess the accuracy with which our method can re-
construct linear growth rates. We also add random noise to
some data sets in order to assess the ability of the algorithm
to reconstruct parameters from nonideal data.

A. Test of the procedure with 2D two-field turbulence

Our first numerical experiment employs a trapped elec-
tron mode sTEMd model to generate two-field data. The
model employed is a pseudospectral code, and fields in this
model represent potential and electron density. As it is a
two-field model, our linear coefficient matrix has four com-
plex components which can be represented by eight real
components. The equations that are used to generate the data
are as follows:

S ]fk

]t
+ gkfkDs1 −Îe + k2rs

2d − Îenef fsñk − fkd

+ ikyvDfkf1 −Îes1 + ahedg − rs
2cso

k8

sk8

3 k · ẑdk82fk8fk−k8 = 0, s37d

]ñk

]t
+ gkñk + nef fsñk − fkd + ikyvDs1 + ahedfk

+ csrso
k8

sk8 3 k · ẑdñk8fk−k8 = 0. s38d

In theseÎe is the trapped particle fraction,nef f is the
electron detrapping rate,rs is ion gyroradius,a is a numeri-
cal factor equal to3

2, he is the ratio of temperature to density
scale lengths,vD is the diamagnetic drift frequency, andcs is
the sound speed. The factorgk is an artificial damping term
introduced to enable saturation on a grid scale too small to
incorporate physically realistic damping mechanisms. In this
simulation,gk is hyperviscous at highk and forms a Gauss-
ian at lowk.

The version of the algorithm applied to these data em-
ployed the following basis set:

b1,ffn
k,k8 = sk 3 k8 · ẑd,

b2,nfn
k,k8 = sk 3 k8 · ẑd,

b3,fff
k,k8 = sk 3 k8 · ẑdk82,

b4,fff
k,k8 = sk 3 k8 · ẑdk82k2,

b5,nff
k,k8 = sk 3 k8 · ẑdk82,

b6,fnn
k,k8 = sk 3 k8 · ẑdk82,

b7,nnn
k,k8 = sk 3 k8 · ẑdk82,

b8,fff
k,k8 = sk 3 k8 · ẑdk82kx,

b9,fff
k,k8 = sk 3 k8 · ẑdk82ky,

b10,fff
k,k8 = sk 3 k8 · ẑdkx,

b11,nfn
k,k8 = sk 3 k8 · ẑdky,

b11+l,fff
k,k8 = sk 3 k8 · ẑdk82sinS lfk2

kmax
2 D, l = 1,15. s39d

In this basis set, function 2 is a simple nonlinearity cho-
sen to represent theE3B nonlinearity in our model. Func-
tions 3, 4, and 12–26 form a series nonlinearity which rep-
resents the polarization drift nonlinearity in our model. A
series representation is necessary because of the functional
dependence of this nonlinearity ons1−Îe+k2rs

2d, which can-
not be represented as a single function without prior knowl-
edge of the value ofÎe. The remaining termss1,5–11d are
control functions.

Figure 1 shows the results of one of those components
over a select set of wave numbers. The wave numbers are at
kx=0 for different values ofky, and the coefficient shown is
the imaginary part of thef-f componentspotential self-
reactiond of the coefficient matrix. This particular component
is dominated by the diamagnetic drift frequency with disper-
sive terms due to finite Larmor radius effects.

Marked with circles and bars and situated at the top of
Fig. 1 for ky values of −4 through −12 are the lines for the
actual values calculated from the input parameters of the
simulation and the algorithm output for three realizations
spairs of time stepsd of data with no added noise. These lines
coincide with each other, indicating excellent agreement be-
tween algorithm output and simulation input. In this case, the
algorithm was able to reconstruct the original coefficients to
several significant figures’ precision. That it was able to do
so with only three realizations is significant when compared
to conventional bispectral algorithms, which require thou-
sands of realizations.

The other three lines are fits involving varying numbers
of realizations, ranging from 3 to 21, in which the data

FIG. 1. Bispectral output vs simulation input. Simulation data are from a
TEM simulation. Displayed data are for the imaginary part of thef-f
component of the coefficient matrix for modes withkx=0.
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sample has been contaminated with white noise. The noise in
this case is weighted in proportion to the average fluctuation
level at each wave number, and for these cases its average
magnitude is 0.1% of the fluctuation level.12 As we can see,
this causes a significant reduction in the accuracy of the fit
for three realizations, however, with a modest increase in the
number of realizations the quality of fit rapidly improves.

B. Test of the procedure with 2D one-field
turbulence

In our next numerical experiment, we seek to compare
the accuracy of the basis function form of bispectral analysis
to previous forms of bispectral analysis, in this case the Ritz
method. Since the Ritz method applies only to single-field
data, we employ a single-field version of the basis function
method. The source of our simulation data is a somewhat
more generic single-field spectral code; since we are only
interested in the accuracy with which our algorithm can re-
construct the simulation coefficients, our growth and fre-
quency spectra are chosen more or less arbitrarily within the
constraint of achieving a stable saturated state rather than
attempting to model any particular physical system. The
simulation code does employ two nonlinearitiessdensity and
vorticity advectiond.

The equations used to generate the data are loosely
based on the Terry–Horton equations10 and are as follows:

]n

]t
= ikyvDn − gkn + Îedkky

2n + L1
1

2o
k8

sk 3 k8 · ẑdsky

− ky8dnk8nk−k8 + L2o
k8

sk 3 k8 · ẑdk82nk8nk−k8. s40d

The coefficientsL1 andL2 are strengths assigned to the
nonlinearities, which representE3B and polarization drift
nonlinearities, respectively. The coefficientdk controls in
what parts of the spectrum this term is active. It is set to a
constant value in a rectangular region ofk space and is zero
elsewhere. The termgk is artificial damping, as with the
TEM model, however, since we are interested here in pro-
viding data to test a diagnostic algorithm we are simply in-
terested in generating a stable saturated state, not in model-
ing any particular physics. As a result, in certain parts of the
spectrum this term is given a negative value and this in turn
constitutes the main source of free energy input in this simu-
lation. It is hyperviscous at highk but is given a constant
negativesdrivingd value at intermediatek.

Figure 2 shows the results from this comparison. Both
algorithms are applied to the same data set, and the output
growth rates forkx=0 and different values ofky are com-
pared.

The version of the algorithm applied to these data em-
ployed the following basis set:

b1
k,k8 = sk 3 k8 · ẑdk82,

b2
k,k8 = sk 3 k8 · ẑdky. s41d

This basis consists entirely of simple nonlinearities
found in our model. This was chosen out of expedience since

in this test we are interested in a noise sensitivity compari-
son, not a proof of the validity of the algorithm. This does
result in a small basis set, which may artificially reduce noise
sensitivity somewhat compared to the algorithm with a more
realistic basis set, however, for the purposes of a general
comparison we can accept this limitation.

The basis function method was tested for three realiza-
tions without noise and for between 3 and 2000 realizations
with 1% noise. Compared to this are the results from the Ritz
method for 2000 realizations and no noise. The basis func-
tion method produces accurate fits to several significant fig-
ures in the absence of noise. Adding noise causes some de-
viations from the correct output, but the overall quality of fit
is still good even for three realizations.

This particular data set proved intractable to the Ritz
method, possibly on account of violating the Millionsh-
chikov approximation. This can be seen by the poor quality
of fit for ky.4.

C. Test of the procedure with time-varying
coefficients

As we saw in the preceding sections, the basis function
method is capable of reconstructing linear coefficients from
fully developed turbulence data using extremely short time
series data. This opens up an interesting possibility that did
not exist previously in the history of bispectral analysis: the
analysis of turbulent systems with time-varying coefficients.

Turbulence with time-varying coefficients can occur
whenever the physics determining the coefficients of the tur-
bulence equations are changing in time. This can be due to
varying pressure or temperature gradients, such as might oc-
cur duringL- to H-mode transitions and vice versa, sporadic
transport events such as sawtooth crashes or ELMsedge-
localized modesd or general adjustment of such gradients due
to the turbulence itself. It can also be due to nonlinear insta-
bility in which the growth rate changes as the turbulence
reaches finite amplitude.

FIG. 2. Comparison of basis function and Ritz bispectral methods on one-
field data. Displayed are growth rates for modes withkx=0.
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Introducing time-varying coefficients presents some po-
tential problems for a bispectral algorithm. Because there is
no exact fit of constant coefficients to a data set generated by
time-varying coefficients, the fit which the algorithm actually
produces will have a large residualx squared. This is similar
to the problem presented by attempting to solve a system
with extreme levels of added noise. As such, the actual result
from such a fit will depend in a nontrivial way on the struc-
ture of the algorithm, and thus the quality of its performance
cannot be easily extrapolated from the much simpler case of
static coefficients.

To test the capacity of the algorithm to handle time-
varying coefficients, we use our TEM model to construct a
simple case of this. The simulation is run until it reaches
saturation with one value of the diamagnetic drift velocity. A
second simulation using a different drift velocity is run using
the final values from the first simulation as starting values,
and the data from the two simulations is spliced together to
form a single data set. This data set now contains an abrupt
transition in the diamagnetic velocity, giving certain coeffi-
cients a step-function dependence in time.

Figure 3 shows the results for a particular value ofkx and
ky when the basis function method is applied to this data set.
The basis function method is applied to a series of 32-
realization time windows, each starting at a progressively
later point in the data set. The x-axis shows the starting time
of the window, with the transition in the coefficient value
occurring att=0. Each window therefore contains different
numbers of time steps before and after the transition.

As we can see from the figure, the algorithm returns the
actual values from the simulation, as we would expect from
our experience in the static case. As the time window crosses
the transition, the returned coefficient varies smoothly from
the initial value to the final value. This is remarkably close to
the ideal behavior of a weighted average between the two
cases. This is a promising result, since the ability to return an
average value over a time window is good enough to analyze
a system with time-varying coefficients, provided the width

of the time window is smaller than the time scale over which
the coefficients vary. In the event that the time window is
longer than the time scale of variation, the algorithm simply
filters out the high frequency components of the signal.
Moreover, this is much better performance than we could
have expected from a system with random noise added to
achieve an equivalent residualx squared.

VI. SUMMARY AND DISCUSSION

We have derived a different procedure for estimating lin-
ear growth rates and nonlinear transfer rates of turbulent sys-
tems from experimental data. This procedure is obtained by
first representing the nonlinear coefficients as a superposition
of a limited set of functions, thus reducing their degrees of
freedom. An algorithm can then be derived from this model
equation using a least squares minimization. This procedure
permits analysis of turbulence with multiple interacting fields
without loss of generality.

This method has been tested against simulation data to
measure its ability to reconstruct model coefficients. Through
these tests it is also compared to previous methods for esti-
mating growth rates and nonlinear transfer rates from data. In
these tests this method produces vastly improved perfor-
mance. It is capable of producing accurate fits using nearly
three orders of magnitude less data, even in the presence of
modest levels of noise. While a quantitative reduction in
noise sensitivity has not yet been verified, the capacity to fit
using such small data sets in the presence of noise strongly
suggests this is the case. Its quality of fit in the absence of
noise is also superior, recovering simulation coefficients to
several significant figures accuracy.

These improvements in the capabilities of bispectral
analysis permit its application to more complicated turbulent
dynamics than would have previously been possible. Be-
cause it can be applied to multiple fields without loss of
generality, it is not necessary to assume that a single field is
sufficient to characterize observed turbulence. The capacity
to apply this approach to multiple fields is in practice limited
by the availability of correlated multifield data. In the event
that such data becomes available this approach provides a
tool for extracting different types of information from it, and
moreover the availability of such a data analysis technique
provides an incentive for the development of such diagnos-
tics.

This method is also capable of analyzing transient be-
havior. This permits the study of turbulent processes in tran-
sient phenomena, such as ELMs, sawtooth crashes, transi-
tions between different confinement regimes, and so forth. It
also permits the study of nonlinear instability. Because it can
be applied to multiple fields, this permits the detection of
certain types of nonlinear instability. Regardless of the
mechanism of the instability such a phenomenon can be de-
tected by observing the variation of growth rates with turbu-
lence fluctuation level.

As of this time, this method has not been applied to
actual experimental data. The quality of reconstructed

FIG. 3. Bispectral output of imaginary part off-f component of the linear
coefficient matrix atkx=0, ky=1.3 over different time windows. Time offset
is measured from an abrupt transition invD. Each time window contains 32
realizations beginning with the offset time.
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growth rates from experimental data therefore remains un-
tested. This is mainly due to the limitations of the underlying
model equation it assumes to accurately represent physical
turbulence, particularly after it has been filtered by an ap-
plied measurement apparatus. Some potential problems in-
clude inhomogeneities due to rational surfaces and magnetic
shear, essential turbulent dynamics at a scale below the reso-
lution of the measurement device, and differences between
the experimental and model coordinate system. The latter
can be addressed by preprocessing data to fit a common co-
ordinate system or by careful choice of basis functions to
account for the probable form of nonlinear coupling in the
experimental coordinates; however, the latter two require
more serious adjustments which are beyond the scope of this
method.

In systems where the above problems are not so serious
as to detract significantly from the quality of fit, this method
offers great promise as a means of data analysis for experi-
mentally measured turbulence. Moreover, the approach em-
ployed to derive this method is fairly generic and may be
applied to more complicated systems by suitable adjustments
to the form of the underlying model equations.
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