Linear and nonlinear description of drift instabilities in a high-beta plasma

A.Y. Aydemir, H. L. Berk, V. Mirnov,® O. P. Pogutse,” and M. N. Rosenbluth
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 4 December 1986; accepted 10 July 1987)

A nonlinear system of equations is derived for drift waves in a high-beta plasma (8> 1). The
magnetic field pressure is taken small compared to the particle pressure. Pressure balance is
established by having a uniform particle pressure with the density and temperature gradients in
opposite directions. The primary purpose of the magnetic field is to inhibit radial heat flux.
This is the principle of such plasma fusion systems as the wall sustained multiple mirror,
compressed liner, and magnetic-insulated inertial fusion, where the heat is contained over a
relatively short radial scale length and a long axial scale length. The nonlinear equations for
the mathematical model contain drift instabilities that give rise to radial heat and particle
fluxes that can enhance the losses expected from classical collisiona) effects. The linear and

nonlinear evolution of the model is studied here.

I. INTRODUCTION

In most controlled fusion concepts, one attempts to use
the pressure of magnetic fields to confine hot plasma. How-
ever, there exist some concepts'~ where cold plasma pres-
sure is used to confine hotter plasma. In such a system the
plasma is cold and dense on the outside, and hotter but less
dense on the inside. The pressure equilibrium is character-
ized by nT = constant in space, where n is the density and T
the temperature. The role of the magnetic field is not to sup-
ply confining pressure, but only to provide thermal insula-
tion across field lines. Thus such a system can be short radi-
ally (perpendicular to the magnetic field) where thermal
conduction is relatively low and long axially where conduc-
tion is larger.

One of the problems of such confinement concepts is the
likelihood of instabilities arising because of density and tem-
perature gradients. Linear drift wave instabilities have been
reported for such systems.* It is the purpose of this paper to
study linear high-beta drift wave theory and to make a pre-
liminary nonlinear investigation of the effect of such drift
wave instabilities. In our nonlinear model the instability
does cause a deterioration of thermal confinement, but, at
some parameter regimes close enough to marginal stability,
the saturation level may be low enough to maintain good
thermal insulation.

In Sec. II, we develop a linear theory for high-beta drift
wave instabilities based on kinetic theory. In Sec. III, we
show how fluid equations can be posed that qualitatively
reproduces the linear instability predictions of kinetic the-
ory. To investigate the nonlinear behavior, we consider a
simplified fluid model that has a simple equation of state
based on the ion population having a conserved magnetic
moment that depends only on r. The linear theory of the
simpler model is qualitatively similar to that of the original
fluid model, and we expect qualitatively similar nonlinear
behavior. In Sec. IV, we present numerical results. Close to
marginal stability these results show quasilinear saturation,
with appreciable temperature gradients remaining. How-
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ever, more unstable regimes cause flattening of most of the
temperature profile. In Sec. V, conclusions are presented.

Il. LINEAR THEORY

We consider a system where
B =8nmp,/B*> 1. (D

Then, in equilibrium, the perpendicular pressure balance
equation is

Pi+p.+B*/8r=p, +p.=no(x)[T,(x) + T;,(x)] =po
(2)

and p, is independent of space. For simplicity we also take
T,(x)/T,(x) tobe space independent. The equilibrium den-
sity and temperature profiles are shown in Fig. 1. The mag-
netic field is present only to inhibit heat conduction which
arises if @ ;/v;> 1, where w,; is the cyclotron frequency of
species j and v; is its collision frequency. We use the kinetic
equation in the low-frequency eikonal approximation. The
perturbed field amplitudes are taken as

E_ _vs_L9A
c Ot

B, = VXA,

A = (B,XVA)/B, + 4,By/B,,
and their spatial variation is taken as exp(/k-r). The linear-
ized form of the kinetic equation for the perturbed distribu-
tion f};, with the equilibrium distribution Maxwellian [i.e.,
Sy = wT,/m;)"'* exp( — E /T;) with E the particle ener-
gy and T, and m; the temperature and mass of species j], is’

. VAV,
——i(a)——ng-—k"v")(fu%iﬁﬂ)j— ij)

2
/] w—w*,-(i—ﬁv—)]ﬂ,j exp(ik)(v-b)

7 2 21 wg
A k B w,; [k
[(¢ _ ydy )Jo( 1"1) L B0y Jx( lvl)],
¢ @Dej kiv.g; @)
(3)
where By = —k 1 A is the perturbed parallel magnetic field,

b=By|B), and wg = (cmv}/2g;B%)k-(bXVB,)
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FIG. 1. Equilibrium profiles used in nonlinear calculations: (a) density,
(b) temperature. For numerical reasons, the cold plasma region is chosen to
be at the center. Since periodic boundary conditions are employed, the
physics of the problem is riot altered by this choice.

=grad B drift. Note that in Ref. 7 the term VA-Vf;,, /B, does
not appear since it is of higher order in the eikonal approxi-
mation. However, keeping this term in linear theory does not
add additional complexity to the analysis. Also, if we define
kX vb =k, v, sin ¢, we have

exp (ikx»'-b) ZJ ( )exp (inv).
o
We have also used
1 dn, 1 9T, - ck, Ty _a_n_o

Ty, Oox  Ou q;Bony Ox
We define v, =w,, and 7 = T,/7,. We assume
(T,/m;)"*€w/ky <(T,/m,)'"?

as the drift instabilities are likely to occur in this parameter
range. (Analysis when w/k v, » 1 is given in Ref. 6.) Under
this assumption, the parallel current caused by ions is negli-
gible compared to the electron current, since the appropriate
moment of Eq. (3) yieldsjy, ~ (k v;/@)?%.. We also assume
ky <k, . The field equations for ¢, 4, and B, are determined
from the first three moment equations, which in our limit
take on the form f

gify +4.n,, =0+ 0(k?A}) (quasineutrality),

(4)
Jier =04 O0Gy /e ) + O(kILZ/B)
(parallel Ampére’s law), (5)

ke(Pres + Pua ))k=0+ O(1/8) (pressure balance),

(6)
where Ap, is the Debye length, L ;' = d In ny/dx, and P, is
a pressure tensor defined below. The densities and parallel
current are evaluated from the moments

fd’vf,j =ny

and

qefd 3U vll.fle =j||e .

We need to be somewhat careful in the definition of ion pres-
sure, which is a tensor with finite-Larmor-radius (FLR) ef-
fects. Assuming the perturbed ion pressure is diagonal al-
though not scalar, which is confirmed by explicitly showing

fd vk, v, kXvbfy, =0,
we need to evaluate
Aepy k=m, 3 [0, 7, Q)
7

One can observe that if the first charge moment is taken
of Eq. (3), the use of Egs. (4)—(6) will allow a degenerate
relationship to be satisfied to lowest order in Larmor radius
for any choice of field amplitudes. This enables us to obtain
the effects of the finite-Larmor-radius terms relatively sim-
ply. We multiply Eq. (3) by g;, integrate over velocity space,
and sum over species. We then find that on the left-hand side
the terms containing f; nearly vanish by the use of the lin-
earized forms of Eqs. (4)-(6). The only term that survives
on the left-hand side is from the ion finite-Larmor-radius
effects on the perturbed pressure. Using Eq. (7), we have

C 0B v?
3 Jaonsyaomgoh, G2 3 [om S,
J
. € c?Bo

- m Bz fds (—_ (k'v)z)/ln
(8)

where we have taken only zeroth-order electron Larmor-
radius effects and k = k/|k |.

Now solving Eq. (3) for f;;, to second order in Larmor-
radius terms, yields

gf[o+70,(3— mvl/ZT)] ( k,v; )[1

T (0 —wg) W—apg

- 6-2)-

el

f11=

Ui .B" {
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Then substituting Eq. (9) into the left-hand side of Eq. (8)

yields
- m (-
; gwgfy; dv =0, 16T,..£ dv, v}

x [0—0,(2—mi/T)]

mvl\kzvl( Buvl)
Xex ¢+
"( T, ) ot " 258,
(10)
with
= ck, T, aBo
2= q,32 ax
Note that only finite-Larmor-radius terms remain on the
right-hand side.

We also find that the zeroth-order Larmor radius terms
on the right-hand side of Eq. (8) [ie., to the extent

J

Jie =4. fd v que =

Bk, ol k

—neowqe( O + ig. (w—w*z)E")[Hﬁ( )]=0,
kuv

Jolkv, /o) = land wJ,(k v, /o )/k, v, = }] automat-
ically vamsh and to have the right-hand side nonzero we
need to use Jo(x) — 1 = —x%/4 + & (x*) and J,(x) —x/
2= —x%/16 + £(x°). As a result the charge density mo-
ment of Eq. (3) has the form

Dy (K, a,) f dxexp(—x)
2[m+rw 2~ x)]exp(—x){
X \95 —_
@ — @DgX Boq, m;
T.B
= — (k.a.)? _(I—G)*T) i) ], 11
(k;a;) [¢+ 5 o -———-qu (11)
where
T,
2 i
% miwii'

We now use the solutiqn of Eq. (3) to evaluate Eqgs. (5)
and (6). We find to lowest order in Larmor radius

(12)

E,
kx (P +Pu ’kL 2fd3v_’tfl‘£‘—‘Ie”eo % [1+§(k . )]
Il I

E) (= dxexp( ——x)x( .’*’ ){ (kn"i)]
—q; 2 — 14+ |-~
o 2
+—Qf—n,gT; dx x%exp( — x) {Q+ 7 2— x))[l-{»&’( 0 ')]:O, (13)
B o Q—x \ @ w

where
Q = w/ 53,

dB, 4,
=B, +k, 220
QL B" + id d k“ Bo

(the perturbed Lagrangian magnetic field), and

(parallel electric field).

One observes that Egs. (12) and (13) only depend on
two field amplitudes, £ and @, , and hence describe a closed
system, independent of a third amplitude. Thus these two
equations, which describe arbitrary excitations, are indepen-
dent of the finite-larmor-radius condition given in Eq. (11).
If desired, the third polarization amplitude can be obtained
from Eq. (4). Even more important, we note that there is
one special nontrivial degree of freedom where
@, = E; =0, but with the field amplitudes nonzero. This
arises if

ky dB, ("AH
k}}BO ax W kﬁc

=

(14)
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Substituting this relation into Eq. (11) allows for an addi-
tional mode of oscillation. The dispersion relation is found to
be

0 — Wby + w, 1G5 = 0. (15)
This dispersion relation is the usual magnetohydrodynamic
(MHD)-like finite-Larmor-radius result in the limit in
which the ion pressure gradient vanishes.® In the general
FLR theory the term 7@, comes from a fourth moment
of the distribution function. Thus stability is guaranteed if
wg/m, <0, while if it is greater than zero, stability requires

< — (16)

We now solve Eqgs. (12) and (13) when E; and @, are
finite. From Eq. (12) and the equilibrium quasineutrality
condition, we find

iqx‘En /k“ = QL Tew/Bo(a) - (0* ).

Then substitution into Eq. (13) yields the dispersion rela-
tion
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D(Q)=1 +fwfﬂﬂ:i)_[x2 +X02-x
o a

Q—x
+x2(r—-1-) (n+—-—(2"‘))] =0, (7
al) a

where ) = o/ @p.
To determine the marginal stability conditions of Eq.
(17), we first rewrite the dispersion relation in the form

x? exp( —x)

D) =G(Q) +H(Q)dex =0, (18)
o —Xx
where
2 2 1
e 2o
G(Q) +Qa+a T o
2 0 1 ) 1
HY) =——— 17— — 1 ——
() al) a(T Qa + a

- oe2)

If at marginal stability >0, then the real and imaginary
parts of Eq. (18) must vanish separately, which implies that
both H(Q) = 0 (from the imaginary part vanishing) and
hence G(£)) = 0. We then find that at marginal stability,
dIn B, 1
a=
dInT,

Aerys

20+
Q=4(1+7)/(14+21=0,.

One can readily show that stability requires a >« .
If at marginal stability ) <0, then marginal stability
requires

(19)

aD(Q,a) _
F;[0)

In general, the marginal condition must be found numerical-
ly for the roots @ = a,,, ¥ = Q,, for a given 7. In Fig. 2 we

D(Q,a)=0 and 0. (20)

10p
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FIG. 2. Solid curves are the marginal stability parameter — a,, and the
marginal frequency — £, as a function of ion—electron temperature ratio
7. Also included in dashed curves is the prediction of the stability param-
eters of the fluid model with heat flow, Q. and a,,, given in Eqs. (48) and
(49). The stable region is on the lower right part of the graph.
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graphrand Q., v§s —a,, = —dIn B/dIn T,. These so-
lutions can be understood analytically at « = 0 and near
a = 1. At a = 0, the dispersion relation is

0*(1427) — 20, ,07(1 + 1) + 27702 =0,
with the root
o=0,7/1+27)[1+7+ (FF—1-=-21)"2].

This root has been obtained by Mikhailovsky* for = 1. Sta-
bility requires 7> 1 + v2, and the important case of 7 = 1 is
always unstable. If 7> 1 + v2, one can readily show that if &
is small and positive, (2 > 0 and ion Landau damping desta-
bilizes the lower frequency solution, while if  is small and
negative, £} <0 and there is no Landau damping. Stability
will then exist as long as — a is less than —«_,,. For

—a> — a,,, instability is present. For large || one can
show the mode frequency is given by

Q=[Q7/Q+7)][1 - 27i/(1 + 7)a], (22)
so that if — a>» 1 we have instability, and if @® 1 we have
stability.

One can solve Eqs. (18) and (20) as 7— . Assuming
Q%7=~2 (1) and a=~ — 1, the dispersion relation becomes

D) = er(l - l) + QT(I +2 )

a

a

@2n

1 Q’r 1
———+2——[ln(——)— ], 23
a? a a7 (23)
with y=0.635 ©being Euler’s constant. Setting
., = — 1+ da,, leads to the rough marginal stability
condition
sal,/In[ba ,7/2] =8/r. (24)

Combining the results of these analyses we conclude
that if 7= T,/T, <1 4 v2 the stability criteria to zeroth-
order FLR and finite-FLR modes are, respectively,

dln B, 1
) 25
T, 2(1+7) (29
and
dln B, <9lnB0>4 (26)
dInT, dIn T,

If 7> 1 + v2, an additional stability band appears for the
zeroth-order FLR modes given by

dInB,
dinT,
where a,,, is negative and is given in Fig. 2. It is significant
that this stability band is compatible with stability criteria to
the FLR mode given in Eq. (26). Note that we have not
considered stabilization or destabilization by parallel Lan-
dau damping.

Aerr (T) < <0, 27N

ill. NONLINEAR EQUATIONS

We have constructed a model set of equations to de-
scribe the nonlinear properties of the zeroth-order FLR
mode.

To model the ion motion we note that k; = 0 and the
flow velocity is
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ExB__c

B?  nle|B*?
If we substitute this form into the continuity equation, we
find after using (1/c)dB /3t = — z-VXE and some addi-
tional straightforward manipulation,

d

vV, =c¢ (Vp; XB). (28)

Zln(N) + (v3*V) In(o) =0, (29)
where N=n,/B, o=T,/B, and
d_d
% at+(V¢ + Vg + V)V (30)
The drift velocities appearing above are given by
zX Vo o dA
) =—2zXVIn(B), v =———V—
Vo F =g =XV, n= -V,
(31)

To close the system we choose an ion model distribution
with a single magnetic moment at each point of space. This
model allows for an exact fluid description of the ions. With
magnetic moment conservation, the equation of motion is
simply

do

—=0, 32
7 (32)

with o = T,/B. For the electron density, we have noted that

the linear response is close to a Maxwell-Boltzmann re-

sponse. Hence we model the nonlinear electron density as
n, = nyexp(le|¢/T,). (33)

The final equation is the pressure balance equation, which at
high beta has the form

niT'i +neTe =Po» (34)
where we somewhat arbitrarily set 7, = T;,(x), with n, and
T, determined by Egs. (36) below. The final set of nonlinear
equations then has the form

%ln (N) 4 (vzV) In(o) =0,

ia:O,

dt

d_2d

dt ot —+ (V¢ + v, + V)V, (35)

le|¢/ Ty =In(N B /ng),
B2No + BNTo/T = po,

and
r,- LY (36a)
Sdy
no=po/To(1 + 7). (36b)

Equation (33) is, of course, only a crude approximation to
the electron response which is to a considerable extent deter-
mined by three-dimensional flow along field lines, beyond
the scope of this paper. However, using the moment equa-
tions, we estimate B,/B,~1k,§, or the field flutter ampli-
tude Ar~1¢& with £~ (k,¢/wB), the displacement in the
plane. In this connection we may estimate the stochastic
field thermal transport
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Xe = veDmag zl%kn vef 2'
Since kjv,>w, depending on the dominant longitudinal
structure of the modes, these neglected processes may be
important and our results are a lower limit on transport.

Equation (36a), together with Eq. (33), is equivalent to
the condition J {¢)/dx ~0, imposed by the constraint that
there is no mechanism present for developing macroscopic
fluid velocities (rotation in the cylindrical case).

For simplicity, our simulations neglect the v; term in
Eq. (35). Including v, in a few check runs did not alter the
results.

To examine the linear stability of our nonlinear model
we have, for 8- o,

n=ny(x) +n,,

T, =T)x)+ T, a7
B = By(x) +B||,
T, =Ty(x)/7.

The pressure balance equation and the linearized Boltzmann
law then give

T T, _m dle|r

L= 1 _ . (38)
(1+7) T, ng T,

The linearization of the form (dg/dt), with g =g, + g,, is
dg . iCkyTi ( n, B, ) dg,
2 —i(w—w — —4 4+ =2 =2
de ( 2)81 le|B + dx

(39)

with wp = (ck,Ty/|e|B)(dB,y/dx). Using Eq. (39) and
Eq. (35) yields

1 B T,
1+ )a) + w, —a)]—‘+ wp—L =0,
[( B Bo+ T

0

(40)

T, B, nl(wB )
] _w___+ w — T —_— _— = _0.
(wg ) 2 ( w) 0+n0 @
(41)

With (n,/ny) = — rT/(1 + 1), the dispersion relation be-

comes
0?2+ 7) — oo, (1+7+7) +Bp7] — 0l =0.
(42)

The instability regime is then found to be
—(l+7r4+7) 2724+ 7)"?
d In Bo
d In T

An alternate fluid model, which includes heat flux from
finite-Larmor-radius effects, gives a description of instabil-
ity quantitatively closer to the kinetic description, especially
when |d In By/d In T;| € 1. The heat flow equation for ions
can be written as

dp,

a—+v Vp, + ¥,Vv, + Vg =0, (44)

where 7, is the adiabatic index, taken here as 2, and ¢ the
heat flux. If we neglect collisional effects and parallel heat
flow, the off-diagonal heat flux q,- remains, and is given by®

—(l4+7+) 4212+ 1)V (43)
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If we use Eq. (31), we find that including the flux causes the
evolution equation in Eq. (35) to be modified to

do + v5°V(o?N) _
dt oN
This equation is not totally consistent, but it appears to pro-
duce favorable properties when its consequences are com-
pared to the linearized kinetic analysis. When we linearize

this equation, it leads to the following form that replaces Eq.
(41):

qr = (45)

0. (46)

T B n,f2wg
By — o)L + (o —20,7 +—1( — )=O.
? T, B, 7 o\ 7 Ot
(41"
Equations (40) and (41') and the relation n,/ny = — 17T,/
(1 4+ 7) T, then lead to the dispersion relation
@*(14+27) —0[20,7(1 +7) + 05(1 +37) ]
+ 20,7 =0. (47)
For dIn By/d In T, = 0, this is the same dispersion as ob-

tained in kinetic theory for a Maxwellian plasma. The insta-
bility band predicted by Eq. (47) is

(1474 (2+47)"?]

1437
dIn B, <« 2
dinT, 1437
At marginal stability the frequency is given by

a(l +31'))
—— )

[1+7—Q2+4n)V2).

L - —1 (1 + 7+
vy a(l+27)

One notes that the stability parameters predicted by one
side of this band,

d ln BO _ 2 _ 1/27 —
dnT,  Tq3 T @ T=a:
track closely with the marginal stability predictions of kinet-
ic theory. For 7> 1 4 v2 the correlation is shown in Fig. 2;
compare the dashed curves (the heat flux model) with the
solid curves (the result of kinetic theory). For 7 < 1 4+ v2, we
note from Egs. (19) and (49) that the ratio of the predicted
dIn B,/d In T, values is given by Table L.

Most of our nonlinear numerical investigations ignored

Qq, (48)

(49)

TABLE 1. List of critical values for stability of @ = d In B,/d In T; from
kinetic theory (a,,, ) and fluid theory (&, ) with heat flow for various val-
vesof r=T,/T,.

T Qery Qg Aqc /acrl
2.00 0.167 0.046 0.28
1.50 0.200 0.119 0.59
1.00 0.250 0.225 0.90
0.75 0.286 0.30 1.05
0.50 0.333 0.40 1.20
0.25 0.400 0.55 1.37
0 0.500 0.83 1.66
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the heat term in Eq. (46). However, as the linear theory,
where the heat term is included, seems to track well with the
kinetic theory with thermal effects, we have also implemen-
ted a nonlinear code that includes this heat term. The results
are briefly described in the next section.

IV. NUMERICAL RESULTS

Equations (35) and (36) are numerically integrated in
a two-dimensional slab geometry with periodic boundary
conditions assuming 7", = T;. For reasons of convenience
and numerical accuracy, a hybrid scheme is used. The quan-
tity N = n,/B is advanced in time using standard second-
order accurate finite-difference schemes. However, convec-
tion of the magnetic moment o using such schemes tends to
introduce unwanted numerical diffusion, especially when
the equilibrium gradients are large and the modes are highly
unstable. In order to minimize such numerical effects, a par-
ticle-in-cell method® is adopted for advancing o. Particles
with an initially uniform spatial distribution are assigned
magnetic moments corresponding to the local value of
o = T;/B. They are then convected with the local drift ve-
locity. This ¢ is interpolated onto the finite-difference mesh
from the particle positions using standard techniques when
needed. Typically, a 64 X 64 mesh with eight particles per
cell are used in nonlinear calculations.

A. Linear calculations

The dispersion relation, Eq. (42), and the instability
window of Eq. (43) are checked numerically using a linear-
ized version of Egs. (35) and (36). In practice this lineariza-
tion is accomplished by numerically filtering out the un-
wanted wavelengths from various quantities at each time
step. The results of this linear code agree quite well with Egs.
(42) and (43). Figure 3 shows the growth rate as a function
of the wavenumber k, for a uniform magnetic field case,
wy/w, = 0. As we have introduced filtering at short wave-
lengths, the numerically calculated growth rates decrease as
k, approaches the largest wavenumber allowed in the sys-
tem, k., /27 =32 in this case. In Fig. 4, we plot the
growth rate for various values of the instability parameter,

oat wg/w* =0
— THEORY
o COMPUTATION
0.3k
[
% L]
y/wm(xx)
0.2}
[
O.lF
0 1 L \ 1 i
| 2 4 8 16 32

ky/2m

FIG. 3. The growth rate as a function of the mode number for a uniform
magnetic field case.
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FIG. 4. The growth rate as a function of the instability parameter
a=wz/w,.

a=(d In By/d In T,). Except for the limit ofwg/w, - — 6,
which implies large field gradients even for moderate tem-
perature gradients, again the computational results and the-
ory agree quite well. Note that the growth rate has a maxi-
mum at @ = wy/w, = — 3. The reduction in growth rates
beyond that point, and the eventual stabilization at
a = — 6.46 can be attributed to the increasing grad-B drift
as the field becomes more diamagnetic. The stabilizing influ-
ence of a large v, can be seen in the first two equations of
(35) by balancing (8 /Jt) and (v,+V) terms, which leads to
stable oscillations at @ = /3.

B. Nonlinear results

As stated earlier, the primary purpose of the magnetic
field in the high-beta devices under consideration here is to
inhibit radial heat flux. For this purpose, it is desirable to
have the magnetic field act only as a thermal barrier. How-
ever, instability can cause deterioration of this insulation. In
this nonlinear study we hope to obtain some insight on
whether thermal insulation can be attained. In order to as-
sess the effects of nonlinear evolution of these instabilities on
transport, various initial conditions corresponding to differ-
ent values of the instability parameter w,/w, =dIn By/
d In T, are examined. In all cases, the density and tempera-
ture profiles of Fig. 1 are used. The initial magnetic field is
given by B,(x) = Tp(x)% wherea = wy/0,,.

The nonlinear results will be discussed in terms of two
typical cases. In the first one, the magnetic field is uniform
(a =0), which is unstable but not far from the marginal
stability point at & = 0.46. The instability is observed to sat-
urate through quasilinear modification of the equilibrium:
the density and temperature gradients are reduced, while the
magnetic field becomes larger in the high temperature region
(Figs. 5 and 6). The overall effect is to increase a to approxi-
mately 0.5, at which point the instability shuts off. The modi-
fication of the temperature profile associated with the quasi-
linear saturation is not very severe; the temperature peak
decreases by 15%, but otherwise particle and energy con-
finement is maintained. Note that the change of gradient
introduced into the magnetic field will reduce the effective-
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FIG. 5. Temperature at saturation for @ = 0: (a) contours in the x-y plane
with the maximum and minimum values of temperature indicated below the
graph, (b) y-averaged temperature profile.

ness of the thermal barrier, since the field in the cold plasma
region is decreased.

The second case witha = — 1.2 has an initially radially
increasing magnetic field. However, the drift instabilities
have a larger growth rate for@ = — 1.2, and their nonlinear
evolution has a more pronounced effect on confinement. The

1.0
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05 «x 1.0
Bmn®078  Bpgs* I3
(b)
up ]
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[Ke] 2 B
09} 1
0 05 «x 10

FIG. 6. Magnetic field at saturation for @ = 0: (a) contours in the x-y plane
with the maximum and minimum values of magnetic field indicated below
the graph, (b) y-averaged field profile. Initially field is uniform for this case.
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FIG. 7. Initial magnetic field profile for @ = — 1.2: (1) contours in the x-y

plane with the maximum and minimum values of magnetic field indicated
below the graph, (b) B,(x).

initial density and temperature profiles are the same as in the
a =0 case (Fig. 1); the initial magnetic field profile is
shown in Fig. 7. The temperature and the magnetic field at
saturation are shown in Figs. 8 and 9, respectively. Note that
the y-averaged temperature profile, (7'}, (x), has essentially
become flat, resulting in loss of confinement. More impor-
tantly, the gradients for (T'), and (B ), are no longer in
opposite directions. The hot and cold plasma regions have
exchanged places [compare Figs. 1(b) and 8(b)], and the

1.0,

&y \\,5{9*( n

B S
o WYL
05 «x 1.0
Tenin= 079 Tmox =26
1.70
<T>y
1.65
1.60
FIG. 8. Temperature at saturation for @ = — 1.2: (a) contours with the

maximum and minimum values of temperature indicated below the graph,
(b) y-averaged profile.
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FIG. 9. Magnetic field at saturation for @ = — 1.2: (a) contours with the

maximum and minimum values of magnetic field indicated below the
graph, (b) y-averaged profile.

instability parameter & has become positive. This is in con-
trast to the previous case which reached quasilinear satura-
tion (a>0.46) essentially through modification of the mag-
netic field while approximately maintaining the initial
temperature gradient.

The deterioration of confinement increases as a be-
comes more negative, which can be attributed to the in-
creased level of turbulence as the magnetic field is excluded
from the interior in the equilibrium. Figure 10 shows 6B /B
at saturation as a function of «, where 6B /B is defined as

8B /B = [((B — By)*)]""*/(B,). (50)

The brackets denote surface averages, and B, is the initial
field. Note that a factor of 2 increase in 8B /B in going from
a =0toa = — 1.2 (shownin Fig. 10) somewhat underesti-
mates the increase in the turbulence level. For a = 0, Eq.
(50) essentially measures the coherent modification of the
initially uniform magnetic field, not the true level of turbu-
lence.

o4r
0.3F
38/B
0.2t
- L | —
-05 0 05 1.0 1.5

- wy /w*

FIG. 10. 6B /B as a function of the instability parameter a = wp/w,, -
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A better indication of the loss of confinement is shown
in Fig. 11, where a measure of the residual temperature gra-
dient in the saturated state is plotted. Near the marginal
stability point a = 0.46, the temperature gradient rapidly
decreases with a. For a< — 0.5, the loss of confinement be-
comes catastrophic, as discussed above for the a = — 1.2
case, in the sense that the temperature profile basically be-
comes flat, with the residual gradient indicating a radial ex-
change of hot and cold plasma regions.

Qualitative differences in confinement between the
a =0and a = — 1.2 cases can also be seen in Fig. 12. Fig-
ure 12(a) shows the position of a “test particle” (one of the
particles used in o advection) at various points in time for
a = 0; in Fig. 12(b), the positions of the same particle are
givenfora = — 1.2. In the @ = O case, the radial excursions
of the particle are relatively small, while it drifts mainly in
the y direction. In Fig. 12(b), however, the drift orbit of the
particle indicates no radial confinement at all; it is not lost
from the system only because of the imposed periodic
boundary conditions.

Nonlinear calculations near the second marginal stabil-
ity point at @ = — 6.4 are difficult to perform, as the large
value of |a| requires using a very fine mesh, and therefore an
expensive calculation. Furthermore, in an extensive run
with @ = — 6.0, we found that the diffusion of the field re-
duces a and thus pushes the plasma to the unstable regime.
Thus, rather than saturating quasilinearly, the plasma be-
comes more unstable, again leading to flattening of the pro-
files. However, in this case the numerical accuracy of our
integration is suspect, and we are not positive whether our
nonlinear instability is physical or just numerical.

Nonlinear calculations above have ignored the heat flux
term [Eq. (45)] in the evolution of o = T,/B. As noted in
the previous section, using the more complete heat flow
equation for ions, Eq. (46), gives closer agreement with the
kinetic theory results of Sec. II. Thus, for comparison, we
have also performed calculations using Eq. (46) for the time
evolution of o, rather than the simple convection loss, do/
dt=0.
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FIG. 11. AT /AT, as a function of the instability parameter a, where
AT=(T)ymax — {T)ymin"{T), denotes y the average of T, and T, is the
initial temperature.
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FIG. 12. Test particle orbits: (a) @ = 0.0, (b) @ = — 1.2. The location of
the particle at ¢ = 0 is circled.

For 7= T,;/T, = 1, the dispersion relation, Eq. (47),
predicts the instability band

dinB
— 223 «=—=2,0.23.
<d1

n T,

Our linear calculations exhibit stability for a =d In B/
dlIn T;>0.23 and o < — 2.23, in agreement with the linear
theory. Moreover, now near both of the marginal points, the
instability achieves quasilinear saturation without serious ef-
fects on confinement. This contrasts with the previously de-
scribed simulation where we achieved quasilinear saturation
only near the positive marginal point. Away from the mar-
ginal points (@~ — 1), however, confinement degradation
is severe. There results are summarized in Fig. 13, which
shows the residual temperature gradient after saturation asa
function of ( — a).
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FIG. 13. AT /AT, as a function of the instability parameter a for the nonlin-
ear model with heat flux. See the caption of Fig. 11 for the definitions of AT
and AT,
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V. SUMMARY AND CONCLUSIONS

Drift instabilities have been examined for high-beta sys-
tems where the magnetic field pressure is negligible com-
pared to particle pressure. The primary purpose of the mag-
netic field B, is to inhibit radial heat flux from the region of
large temperature T,

A linear theory based on kinetic theory predicts that two
types of drift waves are excited in the limit w/k, v, €1, with
v, the electron thermal velocity. One type, with the per-
turbed parallel electric field E, i finite, can be calculated with
zero-Larmor-radius theory, while the second mode, which
has E; = 0, requires finite-Larmor-radius terms to obtain an
appropriate description. If 7=T,/T, <1 + V2, the stability
criteria for the two modes are (a) zero-Larmor-radius
mode,

dln B, S 1
AT, ~ 2(1+7)
(b) finite-Larmor-radius mode,

a=3lnBo< c?lnBo>
dlnT, dlnT,

These criteria make it difficult to find a stable operating
range since a <0 is unstable to the zero-Larmor-radius
mode and achieving a > 4, where both modes would be sta-
ble, means a rapid radial falloff of the magnetic field, a condi-
tion that may be technologically difficult. In fact, one usual-
ly envisages systems where the magnetic field is larger on the
outside than the inside.! If 7> 1 4 v2, it appears possible to
find a parameter range simultaneously stable to the two drift
wave modes. If & <0, the finite-Larmor-radius mode is sta-
ble, and there is a band

a=

- |acr2 l <a<0,
which is stable to the zero-Larmor-radius mode, where
— a,,, is given in Fig. 2 as a function of 7. Perhaps this
regime is optimum for stable operation of magnetically ther-
mally insulated systems.

A fluid set of equations was formulated to describe the
nonlinear evolution of the zero-Larmor-radius mode. If
collisionless heat flow is included, the linearized fluid equa-
tions have stability properties quite similar to those of the
kinetic theory, especially if |d In By/d In T;| €1. Two self-
consistent nonlinear sets of equations have also been formu-
lated and in this work we have studied numerically the time
evolution of these equations. In one model there is zero heat
flow, which is exact for an.ion distribution that is a delta
function in the magnetic moment. The other model includes
ion heat flow, based on a somewhat arbitrary truncation pro-
cedure, whose stability boundaries are qualitatively similar

to the kinetic theory.
In the numerical simulation where we choose T, = T,

we find that an initially unstable equilibrium profile close to
marginal stability relaxes to a stable profile. However, for
initial profiles significantly different from the marginal one,
we find that most of the thermal insulation is lost, and the
final temperature difference between the inside and the out-
side becomes quite small. For example, for the zero heat flow
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model with @ = — 1.2, we show that thermal insulation is
lost in one drift time of the longest wavelength. Similar re-
sults arise with the heat flow model. For a constant profile,
this implies a loss rate,

i, _c OT,

L ~=9; Box ax ’

where k, L, ~ 1 with L, the macroscopic scale length. This
loss is similar to the Bohm diffusion rate, even perhaps an
order of magnitude faster if one takes into account the nu-
merical factor of & in Bohm diffusion. Thus the simulation
indicates  that systems  with profiles  with
a=dInBy3dIn T,~ — 1 (which one expects from model-
ing in simple magnetic field configurations) and with
T,/T, =1 have poor confinement.

Better containment may be obtained if profiles with
a >0 can be formed or if plasmas with 7,/T; <1 can be
established. The simulation indicated that if an equilibrium
is unstable but not too far from the marginal stability profile
of the zero-Larmor-radius mode, the system relaxes to the
marginally stable profile. For the zero-Larmor-radius mode
the marginally stable value of @, = d1n B,/d In T, is mod-
erate, €.g., in the kinetic theory ., = }. However, stability to
the finite-Larmor-radius mode requires a more severe condi-
tion, which is d1n B,/d1n T; > 4. Hence, if the nonlinear
properties of the finite-Larmor-radius mode are similar to
those of the zero-Larmor-radius mode, very rapidly decreas-
ing magnetic field profiles are needed to maintain stability.

We have already pointed out that if
T,/T;<1/(1+v2), one can find negative values of
d1n By/d In T, that are stable to both types of drift waves. In
such a region, radial thermal insulation should be main-
tained. A lower electron temperature than ion temperature
may in fact be physically easy to achieve, as parallel thermal
conductivity losses pass primarily through the electron
channel.
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